
High Powered Data and Development
Economics

Scraping the Web to Generate Unique Datasets

Damian Clarke

November 24, 2013

Why Python?

I Free

I Power over the whole operating system
I Imagine if Stata had control over Firefox, image editing, Google

Earth, better scientific libraries, . . .

I Quite easy to get up and scraping the web (we’ll do it in 20 mins)

I If you decide you like it, it can do everything for you
I Kevin Sheppard’s course, John Stachurski and Sargent’s course

I Signalling?

http://quant-econ.net/

What Do You Need?

I Unix or OS X: nothing!

I Windows: In many distributions Python is not installed by
default

I For complete packages, install Anaconda (http://continuum.io/)

I It may also be useful to install a stand alone text editor with
syntax highlighting (ie gedit)

http://continuum.io/

How to Run Python

I A number of ways: from the command line, interactively, using
ipython

I For the interests of time, we’ll just run from the command line
I However, if you’re going to run this frequently, ipython is worth

checking out

I If you’re interested in following along online (without
downloading Python to your local machine), go to
http://py-ide-online.appspot.com/

http://py-ide-online.appspot.com/

What is Web Scraping?

Essentially, the process of harvesting data that is directly stored on
the web in an irregular or highly disperse format.

I When undertaking econometric analysis, we of course want very
regular data, formatted into lines and columns

I Generally two steps:
I Looping through nested urls to get to (many) source html pages
I Taking html and formatting into a useful structure

I There are a number of tools people use for this sort of analysis:
Python, R, RapidMiner, even Matlab . . .

Why do we care?

I Often (particularly in developing country settings) data is not
stored directly as a csv

I In some cases, data does not yet exist in any centralised form

I This opens up many entirely different types of data we mightn’t
have previously thought about

I The majority of economics papers are now using ‘novel’ data (ie
not survey based)

What can we do with it?

I It has come in handy for me many times
I Download, unzip and merge 1000+ DHS surveys, up to date at

the second that scraping takes place
I Download all (30,000+) papers on NBER for text analysis
I Download election results: India, Philippines
I Repeated calls to World Bank Data Bank

I And turns up frequently in cool development papers
I Looking at effects of natural disasters
I Looking at effects of ports
I Night lights, geography, bombs, weather, . . .

Figure 1: And it can look quite cool. . .

Hansen, M.C. et al (2013) High-Resolution Global Maps of 21st-Century Forest

Cover Change. Science 342 (6160) 850-853.

Coding

We will go through a relatively simple (and contrived) example.

I For this process, there are a number of tools we will use:
I Ideally, a web browser that lets us look at source code (pretty

much any of them)
I Regular Expressions (Python’s re)
I If this is a big job, we should think about error capture (Python’s

try command)

Basic Code

1 # Scrape_xkcd 0.01 damiancclarke yyyy-mm-dd:2013-11-21
2 #---|----1----|----2----|----3----|----4----|----5----|----6----|----7----|----8
3 #
4

5 #***
6 # (1) Import required packages, set-up names used in urls
7 #***
8 import urllib2
9 import re

10

11 target = 'http://www.xkcd.com'
12

13 #***
14 # (2) Scrape target url and print source code
15 #***
16 response = urllib2.urlopen(target)
17 print response

If you want to download the source code for the example we’ll go through, go to

http://users.ox.ac.uk/∼ball3491/Python/

http://users.ox.ac.uk/~ball3491/Python/

Complete Code

1 # (1) Import required packages, set-up names used in urls
2 import urllib2
3 import re
4 target = 'http://www.xkcd.com'
5

6 # (2) Scrape target url and find the last comic number (num)
7 response = urllib2.urlopen(target)
8

9 for line in response:
10 search = re.search('Permanent link to this comic:', line)
11 if search!=None:
12 lastcomic=re.findall('\d*', line)
13

14 for item in lastcomic:
15 if len(item)>0:
16 num = int(item)
17

18 # (3) Loop through all comics, finding each comic's title or capturing errors
19 for append in range(1, num+1):
20 url = target + '/' + str(append)
21 response = urllib2.urlopen(url)
22 for line in response:
23 search = re.search('ctitle',line)
24 if search!=None:
25 print line[17:-7]

Or, With Error Capture

#***
(3) Loop through all comics, finding each comic's title or capturing errors
#***
for append in range(1, num+1):

url = target + '/' + str(append)
try:

response = urllib2.urlopen(url)
for line in response:

search = re.search('ctitle',line)
if search!=None:

print line[17:-7]
except urllib2.HTTPError, e:

print('%s has http error' % url)
except urllib2.URLError, e:

print('%s has url error' % url)

Exporting Our ‘Data’

Python is extremely capable at editing text to create output files:

1 #***
2 # (3) Loop through all comics, finding each comic's title or capturing errors
3 #***
4 output = open('xkcd_names.txt', 'w')
5 output.write('Comic, Number, Title \n')
6

7 for append in range(1, num+1):
8 url = target + '/' + str(append)
9 response = urllib2.urlopen(url)

10 for line in response:
11 search = re.search('ctitle',line)
12 if search!=None:
13 print line[17:-7]
14 output.write('xkcd,' + str(append) + ',' + line[17:-7] + '\n')
15

16 output.close()

Where to From Here

I You can actually get remarkably far with Python + a web
browser + Regular Expressions!

I Some times you may want a more structured approach: Beautiful
Soup

I Python can do much, much, much more

I Further applied examples at: bitbucket.org/damiancclarke

I Questions/comments?

https://bitbucket.org/damiancclarke

	Python
	Web Scraping
	Coding
	Where to From Here

