Uncertainty 0000

Dynamic Optimisation

MATLAB AND MICRODATA PROGRAMMING GROUP

HILARY 2014 21 FEBRUARY

Abi Adams · Damian Clarke · Simon Quinn

University of Oxford

Introd	uction

The Bellman Equation

Uncertainty 0000

Outline

The Bellman Equation

Output Output

Abi Adams · Damian Clarke · Simon Quinn

MATLAB and Microdata Programming Group

Introd	uction

The Bellman Equation

Uncertainty 0000

Outline

Direct Attack

2 The Bellman Equation

Output Output

Abi Adams · Damian Clarke · Simon Quinn

MATLAB and Microdata Programming Group

Choice over time

Dynamic problems have two aspects: stocks and flows.

- The state variable summarises stocks
- The control variable is the variable being chosen (ie flows)

$$U = \sum_{t=1}^{T} \beta^{t-1} u(c_t),$$
 (1)

$$k_{t+1} = f(k_t, c_t).$$
 (2)

Abi Adams · Damian Clarke · Simon Quinn

The Bellman Equation

Uncertainty 0000

A Dynamic Household

Attach functional forms to (1) and (2):

$$u(c_t) = \ln(c_t) \qquad \qquad f(k_{t+1}) = k_t - c_t$$

Then ...

Abi Adams · Damian Clarke · Simon Quinn

University of Oxford

The Bellman Equation

Uncertainty 0000

A Dynamic Household

$$\max_{\{c_t\}_1^T} \sum_{t=1}^T \beta^{t-1} \ln(c_t) \qquad \text{s.t.} \qquad \sum_{t=1}^T c_t + k_{T+1} = k_1 \qquad (3)$$
$$c_t \ge 0$$
$$k_t \ge 0.$$

Abi Adams · Damian Clarke · Simon Quinn

University of Oxford

MATLABbing it

We should be able to solve this problem by "direct attack" in $\ensuremath{\mathsf{MATLAB}}$

- A function to maximise
- A vector of maximands
- A vector of upper and lower bounds
- A(n) (in)equality constraint
- our old friend fmincon

Introdu o	ction		Dynamic Decisions		The Bellman Equation	Uncertainty 0000
1	funct	ion	V = flowUt	tility(T,	Beta,C)	
2	00	flo	wUtility(T	,Beta,C)	takes T periods	of
3	00	соп	sumption o	f size C	(a Tx1 vector),	and
4	00	cal	culates the	e total u	utility of consu	mption
5	00	ass	uming an a	dditively	y separable util	ity
6	00	fun	ction and	discount	rate β .	
7						
8	t	=	[1:1:T];			
9	V	=	Beta.^(t-	1)*log(C)	;	
10	V	=	-V;			
11						
12	retui	m				

Introduction	Dynamic Decisions	The Bellman Equation	Uncertainty
o	oooooo●oo		0000
Sensitivity			

We have assumed a particular functional form, and values for input parameters

- Here we are imposing these, rather than recovering them
- Of course, we can re-solve the model based on alternative assumptions...
 - Alternative values of β
 - Alternative utility functions
 - Alternative forms of the flow equation (see chapter)

Introduction o Dynamic Decisions

The Bellman Equation

Uncertainty 0000

Figure: Sensitivity of Consumption to Discount Rate

Abi Adams · Damian Clarke · Simon Quinn

University of Oxford

Introd	uction

The Bellman Equation

Uncertainty 0000

Outline

Direct Attack

2 The Bellman Equation

Output Output

Abi Adams · Damian Clarke · Simon Quinn

MATLAB and Microdata Programming Group

Introd	uction

The Bellman Equation

Uncertainty 0000

Outline

The Bellman Equation

Output Output

Abi Adams · Damian Clarke · Simon Quinn

MATLAB and Microdata Programming Group

The Bellman Equation

Generally when people speak about 'dynamic programming' in economics, they refer to the class of models solved using value function iteration.

- While solvers like fmincon are useful as a general outline, often we need more flexible methods of attack
- This is where the Bellman equation comes in handy
- Essentially, breaks down the problem into sequentially much smaller problems

The Bellman Equation

Uncertainty 0000

The Bellman Equation

$$V(k_t) = \max_{c_t} \{ u(c_t) + \beta V(k_{t+1}) \}$$
(4)

Abi Adams · Damian Clarke · Simon Quinn

University of Oxford

Introduction	Dynamic Decisions	The Bellman Equation	Uncertainty
o		oo●oooo	0000
Iteration			

So, we can break this down into sub-problems:

$$V(k_{T}) = \max_{c_{T}} \{u(c_{T}) + \beta V(k_{T+1})\}$$

$$V(k_{T-1}) = \max_{c_{T-1}} \{u(c_{T-1}) + \beta V(k_{T})\}$$

$$V(k_{T-2}) = \max_{c_{T-2}} \{u(c_{T-2}) + \beta V(k_{T-1})\}$$

$$\vdots$$

$$V(k_{2}) = \max_{c_{2}} \{u(c_{2}) + \beta V(k_{3})\}$$

$$V(k_{1}) = \max_{c_{1}} \{u(c_{1}) + \beta V(k_{2})\}$$
(5)

Abi Adams · Damian Clarke · Simon Quinn

University of Oxford

Introd	uction

The Bellman Equation

Uncertainty 0000

Iteration II

Now, all we need is a place to start...

$V(k_{T+1}) = 0 \quad \forall \quad k \tag{6}$

Abi Adams · Damian Clarke · Simon Quinn

University of Oxford

The Bellman Equation

Uncertainty 0000

MATLABbing it

We'll solve Bellman equations numerically with MATLAB

- Essentially, 'brute force' grid search
- Requires 'gridding' state variables (if not binary)
- Let's check out backwardsInduc.m

The Bellman Equation

Uncertainty 0000

'Memoization'

A brief final point here: this is computationally intense, but we can avoid a lot of repeated heavy lifting

- 'Memoization' (aka computer programming in 'Nature')
- This is something that comes in very handy when simulating and solving these problems

Introduction o Dynamic Decisions

The Bellman Equation

Uncertainty 0000

Outline

The Bellman Equation

Output Output

Abi Adams · Damian Clarke · Simon Quinn

MATLAB and Microdata Programming Group

Introd	uction

The Bellman Equation

Uncertainty 0000

Outline

2 The Bellman Equation

Output Output

Abi Adams · Damian Clarke · Simon Quinn

MATLAB and Microdata Programming Group

Uncertainty

What we've seen so far is actually remarkably flexible.

- Generalises quite simply (in theory) to multiple state and control variables
- Though in practice, curse of dimensionality
- Perhaps the only major thing we're missing is stochastic elements

The Bellman Equation

Uncertainty

The Bellman Equation

$V(k_t) = \max_{c_t} \{ u(c_t) + \beta \mathbb{E}[V(k_{t+1})] \}$ (7)

Abi Adams · Damian Clarke · Simon Quinn

University of Oxford

Uncertainty 0000

Decisions Under Uncertainty

So, now the decision must framed in terms of consumption now and *expected* consumption in the future.

- In this case, the backwards iteration step is similar
- However, the iterating forwards to solve the model depends upon progressive realisations of shocks
- If time: finiteStochastic.m, simulateStochastic.m

Abi Adams · Damian Clarke · Simon Quinn

The Bellman Equation

Simulations

Figure: Simulated Consumption in a Stochastic Model

Abi Adams · Damian Clarke · Simon Quinn

University of Oxford

Summary

This week:

- Finite horizon dynamic optimsation
- Bellman equations
- A little bit of model simulation

Next week:

- Infinte horizons
- Using Bellman again
- Estimation!!

Uncertainty 0000

Dynamic Optimisation

MATLAB AND MICRODATA PROGRAMMING GROUP

HILARY 2014 21 FEBRUARY

Abi Adams · Damian Clarke · Simon Quinn

University of Oxford