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Background

We will use these notes as a guide to what will be covered in the Microeconometrics coures
in the Master of Economics at the University of Chile. We will work through the notes in class
and undertake a series of exercises on computer to examine various techniques. These notes
and class discussion should act to guide your study for the end of year exam.

Along with each section of the notes, a list of suggested and required reading is provided.
Required reading should act as a complement to your study of these notes; feel free to choose
the reference which you prefer from the list of required readings where two options are listed.
I will point you to any particularly relevant sections in class if it is only present in one of these.
You are not expected to read all references listed in suggested readings. These are chosen as
an illustration of the concepts taught and how these methods are actually used in the applied
economics literature. At various points of the term you will be expected to give a brief pre
sentation discussing a paper chosen from the suggested reading list, or other papers which you
would like to propose (subject to confirmation with the professor). Readings like this can also
be extremely useful as you move ahead with your own research, and in eventually writing up
your thesis.
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Chapter 1

Econometrics in Parallel Universes

1.1 An Introduction to Treatment Effects and the Potential
Outcome Framework

Required Readings
Imbens and Wooldridge (2009): Sections 13.1 and 5.1
Angrist and Pischke (2009): Chapters 12

The treatment effects literature focuses on how to causally interpret the effect of some in
tervention (or treatment) on subsequent outcomes.

The use of treatment effects methods is frequent—in the academic literature as well as in the
work of government and international organisations. Famous examples in the economics litera
ture include—amongmany others—the effect of dewormingmedication on children’s cognitive
outcomes, the effect of having been involved in war on labour market earnings, the effect of
microfinance receipt on small business profit, and the effect of certain types of political lead
ers on outcomes in their constituencies. The nature of the type of interventions examined using
treatment effect methodologies is very broad. They may be interventions designed explicitly by
researchers (such as those which are common in organisations like JPAL), they may be public
policies such as antipoverty programs, they may be environmentally imposed, such as expo
sure to pollution, or they may be a mixture of these, such as the PROGRESA/Oportunidades
program which is an experimentally defined public policy. However, what all treatment effects
methods have in common, regardless of the nature of the intervention, is a clear focus on iden
tifying causal “treatment effects” by comparing a treated individual to an appropriately defined
control individual.1

1Without loss of generality, you could replace “individual” with “firm” or some other unit of treatment. For
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6 CHAPTER 1. ECONOMETRICS IN PARALLEL UNIVERSES

This may sound slightly different to what you have considered in your studies of economet
rics so far. In previous econometrics courses, the consistent estimation of parameters of interest
has relied upon assumptions regarding individuallevel unobservables ui, and their relationship
(or lack thereof) with other variables of interest xi. In this course however, estimation will be
explicitly based on considering who is the appropriate counterfactual to be compared to the
treated individual. Fortunately, while the way of thinking about these methods is different to
what you have likely seen so far, many of the tools and assumptions that we make will have a
very natural feel to you from earlier courses. We will once again encounter regressions, instru
mental variables, and panel data at various points in this course, however the framework will
generally explicitly refer to treatment effects based off counterfactual comparisons.

1.1.1 The Case for Parallel Universes

In the simplest sense, what treatment effects methods boil down to is the application of a
‘parallel universe’ thought experiment. In order to determine the effect that receipt of treatment
has on a person, what we would really like to observe is precisely the same individual who lives
their life in two nearly identical cases. In one universe, we would like to see what happens to
the individual when they receive the treatment of interest, and in the other universe, we’d like
to see the same individual in the same context, subject to the minor difference that they did not
receive treatment. Then, without any complicated econometrics, we could infer that the causal
impact of treatment is simply the difference between the individual’s outcomes in these two
worlds.2

In slightly more formal terms, we can think of an individual i, with observed characteristics
xi, assigned to treatment w ∈ {0, 1}, and with observed outcome yi. In reality of course,
we cannot run our thought experiment, as we observe only one of the two cases: either the
individual is treated, in which case w = 1, or is untreated, with w = 0. The job for us as
econometricians then is in answering the question: what would individual i have looked like if
they had received treatment w′ instead? (Or, in other words, what would have happened in the
parallel universe?)

This question leads us to the Rubin Causal Model...

the sake simplicity, we will refer to the unit of treatment as “individuals” throughout the rest of these notes.
2This may seem very far fetched, but social scientists have expended a lot of effort in wriggling around the

lack of an observed alternative universe. We could think, for example, of all the work on monozygotic twins as
an—admittedly flawed—real world attempt at examining individuals with identical genetic material in parallel
lives…
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1.1.2 The Rubin Causal Model

The Rubin Causal Model (RCM) introduces a language that can be useful in clarifying
thinking to answer that question. At first glance this way of modeling the question under study
may seem very different from what you have seen so far in econometrics. In Section 1.1.3 of
these notes we will return and relate this back to the kinds of empirical models with which you
are already familiar. The RCM divides the evaluation problem into two distinct parts: a set of
potential outcomes for each unit observed, and an assignment mechanism that assigns each unit
to one and only one treatment at each point in time. We will examine these in turn.

Potential Outcomes

Let Wi be a random variable for each individual i that takes a value of 1 if they receive a
particular treatment, and 0 otherwise.3 We will be interested in a measurable outcome, Y .

For example, we may be interested in the impact of attending secondary school on subse
quent labormarket earnings. In that case,wi would take a value of unity only for those individu
als who attend secondary school, and y would be a measure of their earnings. Examples of such
analysis abound, and have even come to dominate much of the applied, microeconomic work
in development. If you open up a recent issue of AEJ Applied Economics or AEJ Economic
Policy, you will likely find many interesting examples of problems cast in this way.

Any given individual could be associated with either treatment (in which case wi = 1)
or its absence (wi = 0). The RCM defines a pair of potential outcomes, (y1i, y0i) to these
counterfactual states. So far, so good. However, there is a problem…At any point in time, only
one of these potential outcomes will actually be observed, depending on the condition met in
the following assignment mechanism:

yi =

y1i, if wi = 1

y0i, if wi = 0.
(1.1)

At this point it is worth explicitly making note that both of these outcomes together will never
exist for a given i. If we observe y1i (an individual’s outcome under treatment) this precludes us
from observing y0i. Conversely, observing an individual’s outcome in the absence of treatment
implies that we will never observe the same unit under treatment. This is what Holland (1986)
calls the “fundamental problem of causal inference”: for the individuals who we observe under
treatment we have to form an estimate of what they would have looked like if they had not been
treated.

3In fact it is not necessary—and can be misleading—to think of the alternative to particular treatment as the
absence of any intervention. Often we will be interested in comparing outcomes under two alternative treatments.
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The observed outcome can therefore be written in terms of the outcome in the absence of
treatment, plus the interaction between the treatment effect for that individual and the treatment
dummy:

yi = y0i + (y1i − y0i)wi. (1.2)

(Imbens and Wooldridge, 2009, pp. 1011) provide a useful discussion of the advantages of
thinking in terms of potential outcomes. Worth highlighting among these are:

1. The RCM forces the analyst to think of the causal effects of specific manipulations. Ques
tions of the ‘effect’ of fixed individual characteristics (such as gender or race) sit less well
here, or need to be carefully construed. A hardline view is expressed by Holland (and
Rubin): “NO CAUSATIONWITHOUT MANIPULATION” (Holland (1986), emphasis
original).

2. The RCM clarifies sources of uncertainty in estimating treatment effects. Uncertainty,
in this case, is not simply a question of sampling variation. Access to the entire popu
lation of observed outcomes, y, would not redress the fact that only one potential out
come is observed for each individual unit, and so the counterfactual outcome must still
be estimated—with some uncertainty—in such cases.

The Assignment mechanism

The second component of the datagenerating process in the RCM is an assignment mecha
nism. The assignment mechanism describes the likelihood of receiving treatment, as a function
of potential outcomes and observed covariates.

Assignment mechanisms can be features of an experimental design: notably, individuals
could be randomly assigned to one treatment or another. Alternatively the assignment mecha
nism may be an economic or political decisionmaking process. We sometimes have a mixture
of the two; for example, when we have a randomized controlled trial with imperfect compliance
(which will be discussed much more in section 3.1 later in this lecture series).

Thinking in terms of potential outcomes and an assignment mechanism is immediately help
ful in understanding when it is (and is not) appropriate to simply compare observed outcomes
among the treated and observed outcomes among the untreated as ameasure of the causal effects
of a program/treatment. Note (Angrist and Pischke, 2009, p. 22) that

E[Yi|Wi = 1]− E[Yi|Wi = 0]︸ ︷︷ ︸
Observed difference in average outcomes

= E[Y1i|Wi = 1]− E[Y0i|Wi = 1]︸ ︷︷ ︸
average treatment effect on the treated

+ E[Y0i|Wi = 1]− E[Y0i|Wi = 0]︸ ︷︷ ︸
selection bias

, (1.3)
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by simply adding and subtracting the term in the middle (note that these two terms are the
same!).

This is quite an elegant formula, and a very elegant idea. If we consider each of the terms
on the righthand side of equation 1.3, first:

E[Y1i|Wi = 1]− E[Y0i|Wi = 1].

This is our estimand of interest, and is the average causal effect of treatment on those who
received treatment. This term is capturing the average difference betweenwhat actually happens
to the treated when they were treated (E[Y1i|Wi = 1]), and what would have happened to the
treated had they not been treated (E[Y0i|Wi = 1]).

The second term refers to the bias potentially inherent in the assignment mechanism:

E[Y0i|Wi = 1]− E[Y0i|Wi = 0].

What would have happened to the treated had they not been treated (once again,E[Y0i|Wi = 1]),
may be quite different to what actually happened to the untreated group in practice (E[Y0i|Wi =

0]). It is worth asking yourself at this point if this all makes sense to you. In the above outcomes,
what do we (as econometricians) see? What don’t we see? What sort of assumptions will we
need to make if we want to infer causality based only on observable outcomes? We will return
to discuss these assumptions in more depth soon.

As we will see, when potential outcomes are uncorrelated with treatment status—as is the
case in a randomized trial with perfect compliance—then the selection bias term in equation
1.3 is equal to zero. Due to randomisation, the treated and control individuals should look no
different on average, and as such, their potential outcomes in each case should be identical.
In this ideal setup, comparison of means by treatment status then gives the treatment effect
experienced by those who received the treatment.

In general, the assignment of an individual to treatment statuswi may depend on observable
characteristics, xi. It may also depend on unobserved determinants of the potential outcomes.
In this way we can, in general, have

wi = f(xi, y1i, y0i). (1.4)

This is very broad, stating that assignment can depend upon observable characteristics (gen
erally not a problem), but also could depend upon the potential outcomes themselves (which
will, in general, require attention).4 As we will see in the remainder of this course, the appro

4As a simple example, we could consider the example of a program where the individuals who choose to enter
are those who would do the worst without the program. Using nontreated individuals as a counterfactual in this
case is clearly not appropriate, as their experience without the program is better than what would be expected were
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priateness of alternative estimators will hinge crucially on whether we are willing to assume
that selection is a function only of observable characteristics, or whether we want to allow it to
depend on unobservable characteristics as well.

Estimands of Interest

In this general framework, we have not assumed that potential outcomes (Y0i, Y1i) are the
same across all individuals, or even that the difference between the potential outcomes is con
stant across individuals. This permits alternative definitions of program impact. For now we
will focus on two:5

• Average Treatment Effect (ATE): E[Y1 − Y0]

• Average Treatment Effect on the Treated (ATT): E[Y1 − Y0|W = 1]

The first of these, the ATE, represents the average improvement that would be experienced
by all members of the population under study, if they were all treated. The ATT, on the other
hand, is the average treatment effect actually experienced in the subpopulation of those who
received treatment. Depending on the use of our econometrics, the statistic we will be interested
in will vary. For example, if we are interested in assessing the impact of a targeted antipoverty
program, it seems unlikely that we would be interested in the ATE in the whole population,
many of whom are not eligible for the program, and would likely prefer the ATT. On the other
hand, if we were aiming to assess the impact of a program that is planned to rollout to the whole
population over time, the ATE is precisely what we would like to know.

We will sometimes (and throughout the remainder of this section) assume that treatment
effects are homogeneous; i.e., that they are the same throughout the population. In this case,
clearly, the ATT and ATE will be the same. The two measures of program impact will diverge,
however, when there is heterogeneity in treatment response (or potential outcomes) across in
dividuals, and when selection into treatment—the assignment mechanism—is not independent
of these potential outcomes.

To see why the ATT and ATE will often not be the same, consider analyzing the effect of
obtaining secondary schooling on subsequent income. The returns to secondary schooling will
vary by individual: those with greater natural ability or connections in the employment market
may be better placed to benefit from additional schooling. If it is also the case that those who
end up receiving schooling are those with higher returns, then the ATT will be greater than the

the treatment group not to participate.
5In the following lecture, we will discuss noncompliance in more detail. We will then introduce a third mea

sure, the IntenttoTreat (ITT) effect.
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ATE. Such concerns are central to the ‘scaling up’ of development interventions: if the ATT
and the ATE differ, then intervening to obtain complete coverage may not yield the expected
results.

1.1.3 Returning to Regressions

Thus far, the language of treatment effects may seem a bit foreign to the regression frame
work to which you have become accustomed. This need not be so. In fact, starting from a
slightly more general version of the potential outcomes framework can help to clarify the as
sumptions underlying regressions used for causal inference.

Let’s begin by assuming that there are no covariates—just the observed outcome, Y , and a
treatment indicator,W . It will be helpful to write µ0, µ1 as the population means of the potential
outcomes Y0, Y1 respectively. These values are generally our estimands of interest, and can be
compared to the coefficients you have been estimating in regessionmodels throughout thewhole
course. Let e0i, e1i be a meanzero, individualspecific error term, so that we can write:

y0i = µ0 + e0i (1.5)

y1i = µ1 + e1i. (1.6)

Then, recalling equation (1.2), we can write the observed outcome as

yi = µ0 + (µ1 − µ0)︸ ︷︷ ︸
τ

wi + e0i + (e1i − e0i)wi︸ ︷︷ ︸
ei

. (1.7)

Thus we can see that a regression of y on w will produce a consistent estimate of the average
treatment effect only if w is uncorrelated with the compound error term, ei. This holds when
treatment assignment is uncorrelated with potential outcomes—an assumption that we will in
troduce in Section 1.1.4 as unconfoundedness.

Covariates can also be accommodated in this framework. Consider a covariateXi. For ease
of exposition define x̄ as the population average of x; we can then write:

y0i = µ0 + β0(xi − x̄) + e0i (1.8)

y1i = µ1 + β1(xi − x̄) + e1i. (1.9)

Notice here that we can allow the coefficients, β, to vary according to treatment status. This is
illustrated in Figure 1.1.

The ATE is still given by µ1 − µ0, and we can still include x as a regressor (the reasons
for doing so are discussed in the next section). But we may now want to take explicit care to
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Figure 1.1: Treatment effect heterogeneity with observable characteristic x

y0, y1

xx̄

µ1

µ0

E[y0] = β0(x− x̄) + µ0

E[y1] = β1(x− x̄) + µ1

let the relationship between x and y depend on treatment status, and to incorporate this into
our estimates of the treatment effect. This allows us to flexibly model the situation in which
β0 ̸= β1 in equations 1.8 and 1.9. There are many reallife examples where this might be the
case: for example, the effect of social networks on earnings might be stronger among those
with secondary education (a treatment of interest) than among those without. We will return
to a more extensive discussion of heterogeneity in the lectures which follow, and particularly,
section 3.1 of these notes.

Let us leave aside—for the moment—the issue of varying coefficients. The key question
then becomes, under what circumstances will a regression of the form above give consistent
estimates of the effect of treatmentW ? We now turn to this.

1.1.4 Identification

The simplest case in the analysis of treatment effects occurs when the following three as
sumptions hold.

Assumption 1. Stable Unit Treatment Value Assumption (SUTVA).

Potential outcomes Y0i, Y1i are independent ofWj, ∀j ̸= i.

This is the assumption that the treatment received by one unit does not affect the potential
outcomes of another—that is, that there are no externalities from treatment. When SUTVA
fails, the typical responses are either to change the unit of randomization/analysis, so as to
internalize the externality; or to estimate the externalities direcly. See in particular Miguel and



1.1. AN INTRODUCTIONTOTREATMENTEFFECTSANDTHEPOTENTIALOUTCOMEFRAMEWORK13

Kremer (2004) for a paper that grapples with such externalities6. However, we will maintain
the SUTVA assumption throughout this and the next lecture, unless otherwise specified.

While not explicitly built into SUTVA, the importance of effects and one’s own treatment
status is something that we will want to think carefully about when considering the scope of
results. Both John Henry Effects and Hawthorne Effects will lead to a situation where we
may assign to the treatment an effect which is actually due to people realising that they are
participating in a trial.

Assumption 2. Unconfoundedness

(Y0i, Y1i) ⊥⊥ Wi|Xi

Conditional on covariates Xi, W is independent of potential outcomes. Variations of this
assumption are also known as conditional mean independence and selection on observables.

As suggested by equation (1.7), unconfoundedness is required for simple regression to yield
an unbiased estimate of the ATT, τ . This is also evident in the decomposition of equation (1.3):
unconfoundedness ensures that E[Y0i|Wi = 1] = E[Y0i|Wi = 0]. We may not always be
confident that unconfoundedness holds unconditionally, but in some cases conditioning on a
set of characteristics X can strengthen the case for the applicability of this assumption.

It is important to note that this is a particularly strong assumption. If we are willing to
make an assumption of this type, it buys us identification under a very wide range of settings.
However, we should always ask ourselves whether we believe the assumption in each circum
stance in which we call upon it. This assumption is not dissimilar, in magnitude or scope, to
the exogeneity assumption from the GaussMarkov theorem that has been present in earlier
econometrics courses.

Assumption 3. Overlap

0 < Pr[Wi = 1|Xi] < 1

The assumption of overlap implies that, across the support of X , we observe both treated
and untreated individuals. In other words, for every combination of Xi, at least one treated
and one untreated individual exists. Note this is an assumption about the population rather than
about the sample; the hazards of random samplingmake it highly likely (especially in the case of
multiple and discrete regressors) that we will not observe both treated and untreated individuals
with exactly the same value of these covariates.

6These questions are far from trivial. You may be familiar with the challenges and critiques which arose during
the socalled “WormWars” (see for example Davey et al. (2015); Hicks et al. (2015)). This was an example where
the precise issues which we are discussing in these four lectures (the consistent estimate of treatment effects) spilled
over into the popular press.
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Assumptions 2 and 3 are sometimes known together as the condition of “strongly ignor
able treatment assignment” (Rosenbaum and Rubin, 1983). The identification of a conditional
average treatment effect τ(x) under unconfoundedness and overlap can be shown as follows:

τ(x) = E[Y1i − Y0i|Xi = x] (1.10)

= E[Y1i|Xi = x]− E[Y0i|Xi = x] (1.11)

= E[Y1i|Xi = x,Wi = 1]− E[Y0i|Xi = x,Wi = 0] (1.12)

= E[Y |Xi = x,Wi = 1]− E[Y |Xi = x,Wi = 0] (1.13)

Equation (1.10) is given by the definition of the average treatment effect. Equation (1.11) fol
lows from the linearity of the (conditional) expectations operator. Unconfoundedness is used
to justify the move to equation (1.12): the potential outcome under treatment is the same in
the treated group as it is for the population as a whole, for given covariates x, and likewise
for the potential outcome under control. Equation (1.13) highlights that these quantities can be
observed by population averages.

Equation 1.12 is central for us. This is the first time that we are actually able to say something
using values observed in the real world rather than simply using theoretical potential outcomes
(or in other words, we now have an identified parameter). This makes explicit the importance
of the unconfoundedness assumption for identification in this context.

1.2 Constructing a Counterfactual with Observables

Required Readings
Imbens and Wooldridge (2009): Sections 4 and 5 (Don’t worry about 5.2 and 5.9)
Angrist and Pischke (2009): Sections 3.2 and 3.3

Suggested Readings
Dehejia and Wahba (2002)
Diaz and Handa (2006)
Jensen (2010)
Banerjee and Duflo (2009)

This section could alternatively be called “estimation under unconfoundedness”. Once we
make assumptions of (conditional or unconditional) unconfoundedness, we have a range of
estimation methods at our disposal. As unconfoundedness solves the business of the assignment
mechanism by making it completely observable, all we have left is to recover estimates of these
treatment effects by using data. This is now a technical issue, which we turn to here.
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1.2.1 Unconditional unconfoundedness: Comparison of Means

The simplest case occurs when (Y1, Y0) ⊥⊥ W , without conditioning on any covariates.
Where this assumption holds, we need only compare means in the treated and untreated groups,
as already shown. The ATE can be estimated by a differenceinmeans estimator of the form:

τ̂ =

N1∑
i=1

λiYi −
N0∑
i=1

λiYi, (1.14)

where N0, N1 are the number of treated and untreated individuals in the sample, respectively,
and where the weights in each group add up to one:∑

i:Wi=1

λi = 1∑
i:Wi=0

λi = 1.

A straightforwardway to implement this in Stata or your favourite computer language for econo
metrics is just to regress outcome y on a dummy variable for treatment status.

When will unconditional unconfoundedness hold? It is likely only to hold globally (that is,
for the entire population under study) in the case of a randomized controlled trial with perfect
compliance. This is the reason that claims are sometimes made that such experiments provide a
‘gold standard’ in program evaluation. Since the regression can be performed without controls,
it may be less susceptible to data mining and other forms of manipulation by the researcher, a
point we turn to in the final section of these notes.

Even in a RCT however, there are a number of important considerations, especially when
putting this into practice. Issues such as how to randomise (is it okay to just flip a coin, for
example?), testing for balance of covariates between treatment and control groups, the use of
stratified or blocked randomisation, and power calculations are all things that come up in this
context. We won’t go in to too great depth here, however if you ever find yourself working
in a situation where you are participating in an RCT, an excellent place to start is by reading
Glennerster and Takavarasha’s 2013 “Running Randomized Evaluations: A Practical Guide”,
a comprehensive applied manual with an accompanying webpage: http://runningres.com/.

The handbook chapter of Duflo et al. (2007) also provides an extremely useful overview,
particularly focused on development economics. This also provides handson discussion of the
practicalities involved in implementing randomized control trials along with some key consid
erations such as details related to working with partners for implementation, the procedure of
piloting projects, different methods of randomization elements related to sampling and sample
size, and data collection. We will discuss some of these in more length later, particularly in

http://runningres.com/
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Chapter 4 when we discuss power in hypothesis tests. Each of these considerations has many
‘moving parts’ and is worth reading in full. For example, when considering the way in which
randomization can take place, Duflo et al. (2007) list (i) the oversubscription method, where
participants can be chosen randomly from applicants where more applicants than spots exist,
(ii) Randomized order of phasein, where all individuals eventually receive treatment, but the
timing is staggered, (iii) within group randomization, where certain subgroups in each group
receive treatment, or (iv) encouragement designs, where rather than randomizing the program
itself, researchers provide random groups encouragement of some sort to participate in a pro
gram.

While RCTs allow us to quite credibly make the unconfoundedness assumption, such trials
are not easy to implement and will not be able to answer all questions—an issue to which we
return to extensively in the all the lectures which follow. Deaton (2009) provides a critique. For
now we may note that:

• Randomized controls are expensive and timeintensive to run;

• The set of questions that can be investigated with randomized experiments is a strict
subset of the set of interesting questions in economics;

• Evidence from RCTs is subject to the same problems when it comes to extrapolating out
of the sample under study as is evidence from other study designs.

• Attrition and selection into/out of treatment and control groups pose serious challenges
for estimation.

This is something followed up in Deaton (2020), which pays particular attention to important
ethical considerations behind RCTs in economics. This is not a trivial concern, and something
of central importance in research, and this paper is wellworth reading.

While experiments do very well in terms of internal validity—they identify the treatment
effect for some subpopulation within the sample—they are no guarantee of external validity.
Replication (which may provide evidence that treatment effects are homogeneous, or vary in
predictable ways with measurable characteristics) and, ultimately, theory, are required.

Unconfoundedness will hold globally by design in RCTs. In a less controlled (by the econo
metrician) setting, we may be willing to assume that unconditional unconfoundedness holds
locally in some region. This is the basis for regression discontinuity design, to be discussed
later in the lecture series (section 3.2).
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1.2.2 Regressions

Absent a RCT, unconfoundedness is unlikely to hold unconditionally. In nearly all other
cases in which we will be interested, there will be some reason why individuals receive treat
ment – be it an explicitly targeted program, or individuals choosing to participate in a program
given the incentives they face. As a start, we may be able to make the unconfoundedness as
sumption less stringent by conditioning on a set of characteristics,X . By now the most familiar
way of doing so is through multivariate regression. If we are able to perfectly measure the
characteristics that are correlated with both potential outcomes and the assignment mechanism,
then this problem can be resolved with regression.

Recall the potential outcomes framework with covariates, from equations (1.8) and (1.9).
Let’s combine these seperate equations into one regression model, where we assume a linear
functional form for the relationship between x and each of the potential outcomes (note that this
need not be the case). This leads to a regression of the form:

yi = µ0 + (µ1 − µ0)wi + β0(xi − x̄) + (β1 − β0)(xi − x̄)wi + e0i + (e1i − e0i)wi. (1.15)

Often it is assumed that β0 = β1 = β, in which case this expression simplifies to:

yi = µ0 + (µ1 − µ0)wi + β(xi − x̄) + e0i + (e1i − e0i)wi. (1.16)

Under (conditional) unconfoundedness,E[e0i+(e1i−e0i)wi|Xi] = 0, so the unobservable does
not create bias in the regression.

But this foreshadows the importance of either getting the functional form for β exactly right,
or else having the x characteristics balanced across treatment and control groups. If covariates
are not balanced, then omission of the term (β1−β0)(xi−x̄)wi introduces a correlation between
w and the error term, biasing estimates of the ATE.

It may be tempting to conclude that it is best to err on the side of including covariatesX . And
indeed, in many cases this will be the case. You have likely observed in earlier econometrics
courses that including irrelevant covariates in a regression does not bias coefficients, while
the omission of relevant covariates generally does. However there is an important class of
covariates that should be omitted from a regression approach: intermediate outcomes.

The logic here is simple. Suppose the treatment of interest,W affects a second variable, so
that E[X|W ] = δW , and that both X andW have direct effects on the outcome of interest Y .
In this case, if we are interested in the impact ofW on Y , we want a total derivative—inclusive
of the effect that operates through intermediate outcomeX . Conditioning onX in a regression
would in this case bias (towards 0) such an estimate.
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As Angrist and Pischke (2009) point out, such intermediate outcomes may depend both on
unobserved factors that we would like to ‘purge’ from their potential confounding influence on
the estimates, as well as a causal effect stemming fromW . In this case, the researcher faces a
tradeoff between two sources of bias.

As an example, imagine if we were interested in following up the well known Miguel and
Kremer (2004) worms trial to look at the effect of deworming drugs on eventual labour market
outcomes of recipients (see for example Baird et al. (2016)). We would quite quickly reach the
question of whether we should include education as a control. Education has large returns on
the labour market, and seems like a relevant control in a labour market returns regression. But,
at the same time, any difference in education between treatment and control may be largely due
to the effect of treatment (deworming) itself. The way we would decide to move forward is
not entirely clear, and would require careful consideration of what inclusion or exclusion of the
controls would imply for our parameter estimates.

1.2.3 Probability of Treatment, Propensity Score, and Matching

Unconfoundedness, when combined with regression, gives consistent estimates of the ATT.
But we have seen that, when conditioning on a vector of covariates X is required for this as
sumption to hold, results may be sensitive to functional form. One response is to use very
flexible functional forms in X , but given the degrees of freedom requirements this is not al
ways practical or ideal. A common family of alternatives to regressions of the sort described in
Section 1.2.2 are based on the propensity score.

Begin by defining the propensity score, p(x) = Pr[W = 1|X = x], as the probability of
being treated, conditional on characteristics x. Propensity score methods are based on the obser
vation that, once we assume unconfoundedness, the treatment indicator and potential outcomes
will be independent of one another conditional on the propensity score Rosenbaum and Rubin
(1983).

Theorem 1. Propensity score theorem

Suppose unconfoundedness holds, such that Wi ⊥⊥ (Y0i, Y1i)|Xi, and define the propen
sity score as above. Then potential outcomes are independent of the assignment mechanism
conditional only on the propensity score: Wi ⊥⊥ (Y0i, Y1i)|p(Xi).

The intuition for this result comes from the observation that even without unconfoundedness,
Wi ⊥⊥ Xi|p(Xi). See Angrist and Pischke (2009) for a useful discussion. In a general sense,
as the propensity score is capturing the assignment mechanism, conditional on the propensity
score, all that remains of the Rubin CausalModel is the difference in potential outcomes between
treated and untreated individuals.
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Having established that we need only condition on the propensity score in order to ensure
independence of the assignment mechanism and the potential outcomes, we have a range of
estimating techniques available.

Regression using the propensity score

Possibly the most straightforward use of the propensity score is to use it to augment a simple
regression of observed outcomes on treatment status. In practice this entails first estimating the
propensity score (typically with a logit or probit),7and then including this generated regressor
in a regression of the form:

yi = τwi + ϕp̂(xi) + ei (1.17)

If the relationship between the propensity score and potential outcomes is in fact a linear one,
then the inclusion of p(X) purges this regression of any contamination between the treatment
status w and the error term (recall that the error term contains the individualspecific variation
around the population means of the potential outcomes).

At first glance, this seems to offer a pair of benefits—but these are not straightforward.

First, regression using the propensity score seems to be a solution for a degrees of freedom
problem, in that it is no longer necessary to control for a (potentially high dimension) X in
the regression on potential outcomes. However, this is not the case, since p is a function of
the full set of covariates. This is most easily seen when the propensity score is estimated by a
linear probability model, in which case the estimates are exactly the same as those obtained by
inclusion of X directly.

Second, regression using the propensity score seems to allow us to be agnostic about the
functional form relating X to potential outcomes Y0i, Y1i. Often these functional forms have
been the subject of long debates (for example, in the case of agricultural production functions
or earnings functions), whereas our interest here is simply in the use of X to partial out any
correlation between the assignment mechanism for W and the potential outcomes. However,
regression using the propensity score as in equation (1.17) requires us to correctly specify the
relationship between the propensity score and the potential outcomes, an object for which the
ory and accumulated evidence provide even less of a guide, while at the same time requiring
us to correctly specify the function p(X). This is partly solved by including higherorder poly
nomial functions of p, but at the expense of the parsimony that is the chief advantage of this
approach. The two estimates discussed next—weighting and matching using the propensity

7In Stata, propensity scores can be estimated using the pscore command. Alternatively logit, probit (or for
that matter linear probability) models can be combined with the predict postestimation command to generate the
propensity scores for each observed unit. As of version 13 of Stata, there is a new series of commands contained
in the teffects library which includes a propensity score module pscore.

http://www.stata-journal.com/sjpdf.html?articlenum=st0026
http://www.stata.com/help.cgi?predict
http://www.stata.com/manuals13/te.pdf
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score—have the advantage of allowing us to be truly agnostic about the relationship between
potential outcomes and p(X).

As a final precaution in the case that you wish to combine a propensity score estimate with
regression methods, it is important to note that in such an approach (as with instrumental vari
ables estimates when done ‘by hand’), standard errors must be corrected for the presence of
generated regressors. Bootstrap or other resampling methods are often the easiest route of cal
culating standard errors in circumstances such as these.

Weighting by the propensity score

Under unconfoundedness, the propensity score can be used to construct weights that provide
consistent estimates of the ATE. This approach is based on the observation that (again, under
unconfoundedness)

E[Y1i] = E

[
YiWi

p(Xi)

]
(1.18)

and
E[Y0i] = E

[
Yi(1−Wi)

(1− p(Xi))

]
. (1.19)

To see why, note that, as discussed in Angrist and Pischke (2009, p. 82), equation 1.18 can be
shown to hold as follows:

E

[
YiWi

p(Xi)

]
= E

{
E

[
YiWi

p(Xi)

]∣∣∣∣Xi

}
=

E[Yi|Wi = 1, Xi]p(Xi)

p(Xi)

= E[Y1i|Wi = 1, Xi] = E[Y1i|Xi]

and a similar process can be followed for E[Y0i] (equation 1.19). Combining these gives an
estimate of the ATE:

E[Y1i − Y0i] = E

[
YiWi

p(Xi)
− Yi(1−Wi)

(1− p(Xi))

]
= E

[
(Wi − p(Xi))Yi

p(Xi)(1− p(Xi))

]
(1.20)

which can be estimated using sample estimates of p(X). This idea can be thought of as fram
ing the problem of analyzing treatment effects as one of nonrandom sampling. Although this
insight allows us to avoid making functional form assumptions about the relationship between
potential outcomes and X , it does require a consistent estimate of the propensity score.
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Matching on the propensity score

An alternative and perhaps more intuitive set of estimators are based on matching. To be
gin, note that under Assumption 3, in a large enough sample it should be possible to match
treated observations with untreated observations that share the same value of the covariate vec
tor X . When the covariates are discrete variables, this amounts to ensuring that we have both
treated and untreated observations in all the ‘bins’ spanned by the support ofX . However, in fi
nite samples and in particular with many, continuous regressors inX , exact matching becomes
problematic: we suffer from a curse of dimensionality.

Application of the propensity score theorem tells us that it is sufficient to match on the basis
of p(X), rather than matching on the full covariate vector X .

Figure 1.2: Propensityscore matching using nearestneighbor matching
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Once we have established that our data—or a subset of observations—satisfy the require
ments of common support and conditional mean independence, we can obtain an estimate of
the ATT by:

ATTM =
1

NT

∑
i:wi=1

y1,i −
∑

j:wj=0

ϕ(i, j)y0,j

 (1.21)

where {w = 1} is the set of treated individuals, {w = 0} is the set of untreated individuals, and
ϕ(i, j) is a weight assigned to each untreated individual—which will depend on the particular
matching method. Notice that

∑
j:wj=0 ϕ(i, j)y0,j is our estimate of the counterfactual outcome

for treated individual j.
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The issue now is how to calculate the weight. There are several possibilities. Two common
approaches include:

• Nearestneighbor matching: find, for each treated individual, the untreated individual
with the most similar propensity score. ϕ(i, j) = 1 for that j, and ϕ(i, k) = 0 for all
others.

• Kernel matching: Let the weights be a function of the “distance” between i and j, with
the most weight put on observations that are close to one another, and decreasing weight
for observations farther away.

Alternative matching methods also exist, including minimizing the Mahalanobis distance and
optimising both the neighbours to be used and their weights together in a single optimisation
problem. The Mahalanobis matching procedure seeks to directly minimize a single measure of
distance based on the imbalance in covariatesX . Consider two observations i and j with vectors
of observable characteristics Xi and Xj respectively. The Mahalanobis metric is to calculate
their “distance” as:

M(Xi, Xj) =
√

(Xi −Xj)′S−1(Xi −Xj)

whereS refers to the sample covariancematrix ofX . A “match” can then be sought based on the
units which are closest in these measures. Note that alternative matching methods can give very
different answers—we will see this ourselves in the data exercise. A limitation of propensity
score approaches is that there is relatively little formal guidance as to the appropriate choice of
matching method. Relatively recent work from King and Nielsen (2019) points to additional
concerns, specifically with propensity score matching, with both losses in efficiency due to the
removal of observations, and at times even increases in bias. In general, all told, this suggests
that propensity score matching should be avoided as a technique for causal analysis.

Matching methods (including propensity scores) can be combined with difference in differ
ences (DiD) techniques. As in Gilligan and Hoddinot (2007), we could estimate:

ATTDIDM =
1

NT

∑
i∈{w=1}

y1,i,t − y1,i,t−1 −
∑

j∈{w=0}

ϕ(i, j)(y0,j − y0,j,t−1)

 (1.22)

which compares change in outcomes for treated individuals with a weighted sum of changes in
outcomes for comparison individuals. We will return in far more detail to difference in differ
ences methods in section 2 of these notes.
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1.2.4 Matching methods versus regression

There is no general solution to the problem of whether (appropriately chosen) matching
or regression methods should be preferred as ways of estimating treatment effects under con
ditionañ unconfoundedness—the appropriate answer will depend on the case. Of course, in
general, if a combination of methods leads to conclusions which are broadly similar, this will
give us much greater confidence in the validity of our estimates.

Advantages of propensity score/matching:

• Does not require functional form assumptions about the relationship between Y and the
X covariates. As such it avoids problems of extrapolation: if the support of some X

variables is very different across treated and untreated observations in the sample, then
we will be forced to extrapolate the relationship between x and potential outcomes in
order to estimate the treatment effect under regression (to see this, consider allowing the
β to vary by treatment status).

• Can potentially resolve the ‘curse of dimensionality’ in matching problems.

Disadvantages

• Shifts the problem of functional form: must correctly specify e(x) = Pr[W = 1|X =

x]. Note that since most candidate estimates (probit, logit, etc) are relatively similar
for probabilities near 1/2, these methods may be more appealing when there are few
observations with very high or very low predicted probabilities of treatment.

• Matching on the basis of propensity score proves to be very sensitive to the particular
matching method used.

• Asymptotic standard errors under propensity score matching are higher than under linear
regression, even when we have the ‘true’ functional form—this is the price of agnosti
cism. In small samples, however, this may be less of an issue Angrist and Pischke (2009).

1.2.5 Some Points on Inference

In the case of regressions or comparison of mean estimators, typically inference—the pro
cedure allowing for the construction of standard errors, confidence intervals, and eventually
pvalues—can be conducted using standard analytical formulae for variance. However, these
are generally asymptotically valid, and based on strong assumptions such as normality of the
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residual terms. While these are still the most commonly used inference procedure, and increas
ingly common procedure consists of conducting “randomization inference”.

Randomization inference, originally laid out in Fisher (1925, 1935) provides an alternative
means of inference which is valid in small samples, and can be conducted by simply taking
the true data and randomly permuting (or shuffling) a treatment status throughout observations
and then reestimating the treatment effect, before counting how many times these randomly
generated statistics exceed the original treatment value.

Randomization inference follows from the idea underlying “Fisher’s exact test” using con
tingency tables. Consider a case where we have 6 individuals, 3 of whom randomly receive
a treatment, and 3 of whom randomly receive a placebo (control). If we compare the average
between these two groups assuming balance, we can calculate the treatment effect as the dif
ference in means. If we wish to formally test whether this is significantly different to zero,
with 6 observations a ttest, and certainly something based upon asymptotic approximations,
will likely not be appropriate. So to see whether this treatment effect is actually something that
is significantly different to zero, one way to proceed would be to compare it to many samples
where, in theory, no effect should exist, and ask how extreme the effect is compared to these
samples. The logic behind the exact test, and randomization inference generally, is that we can
generate such samples by randomly permuting the treatment status within the sample, holding
all outcomes fixed, and simply considering the ‘treatment effects’ in all possible reshuffled
treatment cases. In order to calculate a pvalue, we can ask how extreme the observed real
treatment effect was compared with all the possible permuted treatment effects if the treatment
status had been simply assigned at random to the same number of observations in this group.

It is perhaps useful to see a simple example. Consider the case of 6 units, with 3 observations
randomly assigned treatment. Imagine that the observed outcomes were then, in the treatment
group: (34, 27, 29), and in the control group: (14, 18, 24). A simple comparison of means
estimator suggests that the treatment effect is 11.33. To calculate a pvalue, we can permute
all the possible combinations, and ask what proportion of these are greater than or equal to
this treatment effect. If we consider random orderings of 6 units, this suggests that there are 6!
possible combinations, but in reality, as we are randomly choosing 3 units from these 6 to assign
a permuted treatment status, the actual value of different combinations is

(
6
3

)
= 6!

3!∗(6−3)!
= 20.

We document each of these possible permutations, as well as their permuted treatment effect in
Table 1.1. In this case, we can see that only 1 of the 20 different permutations is greater than or
equal to 11.33 (the original treatment status). Suggesting an exact pvalue of 1/20 = 0.05.

These methods are formally discussed in Athey and Imbens (2017) (among other places).
Using their notation, the pvalue we refer to above is denoted as:

p = pr(|T ave(W,Y obs, X)| ≥ |T ave(W obs, Y obs, X)|).
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Table 1.1: A Simple Illustration of Randomization Inference

Permutation Treatment Control Estimate

Original (1) 34 27 29 14 18 24 11.33

2 34 27 14 29 18 24 1.33
3 34 27 18 14 29 24 4
4 34 27 24 14 18 29 8
5 34 14 29 27 18 24 2.67
6 34 18 29 14 27 24 5.33
7 34 24 29 14 18 27 9.33
8 14 27 29 34 18 24 2
9 18 27 29 14 34 24 0.67
10 24 27 29 14 18 34 4.67
11 34 14 18 27 29 24 4.67
12 34 14 24 27 18 29 0.67
13 34 18 24 14 27 29 2
14 14 27 18 34 29 24 9.33
15 14 27 24 34 18 29 5.33
16 18 27 24 14 34 29 2.67
17 14 18 29 34 27 24 8
18 14 24 29 34 18 27 4
19 18 24 29 14 34 27 1.33
20 14 18 24 34 27 29 11.33

where T ave refers to the statistic of interest (in our case the difference in means), and we can
see that the lefthand side of this equation is the original treatment effect where each units true
outcome Y is accompanied by its true treatment assignment W , whereas the righthand side
considers permutations where each Y is associated with randomly assigned treatment statuses
W . One of the strengths of this randomization inference is that permutation can be performed
over the same level of treatment assignment as in the original experiment, for example allowing
for clustered treatments.

A nice very applied discussion is provided in the paper by Heß (2017), which introduces
Stata tools to deal with randomization inference. It also shows the implementation for this in a
particular paper, that of Fujiwara and Wantchekon (2013). Another recent paper implementing
these methods is that of Baranov et al. (2020), who estimate the effect of random participation
in a large psychotherapy program that reduced postpartum depression of mothers in Pakistan
on their longterm well being, financial empowerment, and investments in children.

Finally, note that in general with a larger number of observations, we cannot calculate
an exact test,8 and thus generally we simply calculate a relatively large number of permuta

8Even with quite moderate number of observations, the total number of possible combinations grows very
quickly. For example, while 10 units with 5 randomly assigned treatments gives a reasonably manageable

(
10
5

)
= 252 possible combinations, this grows quickly, with 20 units and 10 treatments resulting in

(
20
10

)
= 184, 756
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tions at random. Some very applied advice is given by the Development Impact Evaluation
unit in the World Bank at the following page https://dimewiki.worldbank.org/wiki/
Randomization_Inference, suggesting the following steps:

1. Preserve the original treatment assignment.

2. Generate placebo treatment statuses according to the original assignment method.

3. Estimate the original regression equation with an additional term for the placebo treat
ment.

4. Repeat #1–3.

5. The randomization inference pvalue is the proportion of times the placebo treatment
effect was larger than the estimated treatment effect.

possible combinations, and 30 units and 15 treatments a massive
(
30
15

)
=155,117,520 possible combinations.

https://dimewiki.worldbank.org/wiki/Randomization_Inference
https://dimewiki.worldbank.org/wiki/Randomization_Inference
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Empirical Exercise 1: PROGRESA

Instructions: We will be using data from the conditional cash transfer program PRO
GRESA. This randomized treatment at the level of the community, where all people
living below a poverty threshold received treatment in the treatment period if they lived
in the treatment community, and all others did not receive treatment. For this, the dataset
PROGRESA.dta is supplied. This dataset has observations on an individuals treatment
(progresa), student enrollment (enrolled) the time period (t), whether the child lives in the
treatment community (tcomm) and various other covariates. The data is a panel, with the
children observed in two periods. The unique child identifier is called iid.

Please also note, that this assignment requires the use of two user written ado files. These are
psmatch2 and pscore. pscore is circulated with the Stata Journal, so cannot be installed
using ssc install. To install both sets of ado files, the following commands should be
used:

ssc install psmatch2
net from http://www.stata-journal.com/software/sj2-4
net install st0026
Questions:
(A) Descriptive Statistics Open that data and generate the following descriptive statistics to
get a feel for the data:

1. How many children are there in the data? Is the panel strongly balanced?

2. What percent of children from the data live in treatment villages?

3. Is the program correctly targeted (ie, where only poor children treated)?

4. Did all poor children in treatment municipalities receive treatment?

5. The variable “score” is a poverty score. How does the poverty score look for poor and
nonpoor individuals?

(B) Experimental Evidence of the ImpactWewill now examine the experimental outcomes
of PROGRESA. In this section, we will thus focus on period 2 only (the period in which the
experiment was conducted).

1. What is the comparison of means estimator of the effect of PROGRESA among eligi
ble children in the period of the experiment when considering the outcome of interest
“enrolled”?

2. What are the assumptions which must hold for this to be an unbiased estimate?

http://repec.org/bocode/p/psmatch2.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0026
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3. Does this seem reasonable in the context?

(C) Nonexperimental analysis: Differenceindifference Suppose that PROGRESA had
not conducted a randomized experiment, so that we only observed data for households in
treatment communities.

1. Do you think differenceinmeans is a reasonable estimator of program impacts in this
case? Why?

2. Is the Diffindiff estimator (with treated and untreated) any better? What assumptions
underlie the use of this estimator?

3. Construct the differenceindifference estimate of program impacts. How does it com
pare to that obtained using the experimental design?

(D) Nonexperimental analysis: Propensity score matching. Suppose instead that we did
not know the score nor the rule used by PROGRESA to allocate individuals to treatment and
control status within treatment villages, we only observe recipients and non recipients.

1. Using available variables from the baseline, such as initial incomes, genders, and ages,
construct an estimate of the propensity score using the stata command pscore. How
does the choice of x variables affect calculation of the propensity score p(x)?

2. Inspect graphically the distribution of propensity scores for recipients and non recipi
ents. Does it favor the overlap assumption?

3. Using this generated propensity score, estimate the ATT with Stata’s commands
psmatch2, using the default option (for nearestneighbor matching) and the kernel
option (for kernel matching). How do the estimates compare with each other? With
the experimental results?



Chapter 2

Counterfactuals from the Real World:
DifferenceinDifferences and its
Derivatives
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2.1 Introduction

Sometimes we may be unwilling to assume that unconfoundedness holds, even after condi
tioning on covariatesX . In this case we say there is selection on unobservables. This opens up
an entirely new set of techniques which must be used to potentially estimate consistent effects
of treatment. In section 2 and 3 we turn to these.

One particular case that we frequently encounter in which we may no longer believe in se
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lection on unobservables is that of “natural experiments”, or naturally occurring events which
strike certain units of a sample but not others. To take one simple example, imagine that we wish
to estimate the impact of a natural disaster, such as an earthquake, on school completion rates.
Earthquakes are to some degree geographically localized, and it seems reasonable to think that
they are not endogenously determined by affected individuals. However, this does not suggest
that it is appropriate to treat them as if they are randomly assigned, and simply compare the
outcomes of affected individuals with those of unaffected individuals. One important factor is
that an effect such as an earthquake hits an area which is potentially quite different at baseline to
areas which are not hit by an earthquake, and as such, any difference following the earhtquake
may owe to the event itself, or also to baseline differences in affected areas. In this case, the
challenge in finding an appropriate counterfactual requires doing something to capture differ
ences at baseline, and often methods such as “differenceindifferences” or related models are
appropriate. We turn to these methods in this chapter.

2.2 DifferenceinDifferences andTwoWayFixedEffectMod
els

The basic underpinnings of the differenceindifferences (or diffindiff, or DiD, or DD, or
doubledifference) estimator is the case where we have observations of a pair of units across
time, one of which is exposed to some policy or “treatment” of interest, and another of which
is not. For example, for the case discussed above, imagine if we observe average highschool
completion rates in two areas across two periods, and in one of the areas an earthquake occurred
between the two periods, while in the other it did not. Even in the case that the standard as
sumption of unconfoundedness is not met (assumption 2 from the previous chapter), difference
indifferences allows us to recover an unbiased causal estimate if certain, weaker, assumptions
are met.

Namely, differenceindifferences no longer requires that unconfoundedness holds, but does
require that it holds in first differences, or that selection only owes to a fixed difference at
baseline. Consider the following schematic example laid out in Figure 2.1. Here we use the
notation ytreatment,time to refer to the outcome depending on its exposure to the “treatment” (1
if eventually exposed, 0 if not), and time period (0 at baseline, 1 after treatment is in place).
In the lefthand panel we can see what the requirements would be if wished to use a standard
comparison of means type estimator based on unconfoundedness. Specifically, areas which are
eventually treated and those which are eventually untreatedmust look identical. However, in the
right hand panel we no longer have unconfoundedness, though it still holds in first differences
given that there is a constant difference between eventually treated and eventually untreated
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units across time.1 This righthand case is suitable for diffindiff type methods, but would
result in a clear bias if a comparison of means estimator was employed.

Figure 2.1: Panel Data: Levels and Difference

y

baseline, t = 0 intervention followup, t = 1

y1,1

time

y0,1

y0,0 = y1,0

(a) Unconfoundedness holds

E[y0,0|w = 1]

E[y0,1|w = 0]

E[y0,0|w = 0]

E[y0,1|w = 1]

y

baseline, t = 0 intervention followup, t = 1

y1,1

time

(b) Unconfoundedness fails in levels; holds
in first differences

2.2.1 A Canonical DifferenceinDifferences Setup

Let’s consider this two period and two area case and introduce some notation. We will
refer to time periods t, and areas s to indicate states (though of course these may be regions,
countries, villages, or even nongeographic units). Depending on the treatment status of an
individuals state, We will thus observe one of two potential outcomes:

(a) y1ist = Outcome for individual i at time t if their state of residence s is a treatment state

(b) y0ist = Outcome for individual i at time t if their state of residence s is a nontreatment
state.

As has always been the case with the potential outcomes, we will only observe at most one of
these in a particular state and time period.

The diffindiff setup assumes an additive structure for potential outcomes. We assume:

E[y0ist|s, t] = γs + λt (2.1)

This simply states that in the absence of treatment, the outcome consists of a timeinvariant
state effect (γs) and a year effect (λt) that is common across states.

We are interested in the effect of some treatment w, giving the potential outcome of:

yist = γs + λt + τwst + εist, (2.2)
1This is the commonly referred to “paralleltrend assumption” in differenceindifferences which we will dis

cuss further below.
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where E[εist|s, t] = 0. In what remains we will think of two states, which we’ll callAreaA and
AreaB, and two time periods, which we’ll call Pre and Post. In the Pre time period, neither
state will receive treatment, however in the second time period treatement will “switch on” in
AreaA.

Let’s now consider what would happen if we were to estimate the treatment effect by com
paring potential outcomes in both states in the Post period:

E[yist|s = AreaA, t = Post]− E[yist|s = AreaB, t = Post] = (γA + λPost + τ)− (γB + λPost)

= τ + γA − γB. (2.3)

In this case, we would only recover the unbiased treatment effect in the particular case that the
two states had identical mean values for γ, implying that they would have identical values of
E[y0ist]. Now, consider taking the first difference between the two states in the Pre period:

E[yist|s = AreaA, t = Pre]− E[yist|s = AreaB, t = Pre] = (γA + λPre)− (γB + λPre)

= γA − γB. (2.4)

Now, given that neither state receives treatment prior to the reform, all that remains is the base
line difference in E[y0ist]. Then, combining these two single differences to form our double
differences estimator gives:

E[yist|s = AreaA, t = Post] − E[yist|s = AreaB, t = Post]−
E[yist|s = AreaA, t = Pre] − E[yist|s = AreaB, t = Pre] = (2.5)

(τ + γA − γB) − (γA − γB) = τ.

Thus, if our assumptions hold, diffindiff is a very elegant way to cancel out prevailing
differences between treatment and control areas, and recover a causal estimate of treatment.
These assumptions, of course, are something that we should always question. The key identi
fying assumption in the diffindiff world is the so called “parallel trends” assumption laid out
in equation 2.1. In words, this just says that in the absence of treatment, all states would follow
a similar trend, defined by γt. Treatment then induces a deviation from this common trend, as
is illustrated in panel b of figure 2.1. These parallel trend assumptions are something that we
spend a lot of time thinking about in diffindiff settings. We will return to this in section 2.2.4,
and alternative specifications if we are not convinced in sections 2.2.6 and 2.3.
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Estimating DifferenceinDifferences

Fortunately, along with an elegant theoretical structure, this methodology is easy to take
to data. Differenceindifferences can be very simply estimated in a regression framework.
In order to do so, we generate a number of dummy variables to capture the additive structure
defined in equation 2.2. Following the definitions above, we will define a dummy variable
called “AreaA” which takes 1 if the individual lives in Area A, and 0 if they live in Area B.2

Similarly, we will define a variable Post, which takes 1 during the second time period, and 0
in the first.

Now, to estimate our treatment effect of interest we simply perform the following regression:

yist = α + γAreaAs + λPostt + τ(AreaAs × Postt) + εist. (2.6)

Our coefficient of interest τ , is associated with the term AreaA × Post: the interaction term
which switches on only in Area A after the reform. As Angrist and Pischke (2009, s. 5.2.1) lay
out, this leads to the following interpretation of regression parameters:

α = E[yist|s = AreaB, t = Pre] = γB + λPre

γ = E[yist|s = AreaA, t = Pre]− E[yist|s = AreaB, t = Pre] = γA − γB

λ = E[yist|s = AreaB, t = Post]− E[yist|s = AreaB, t = Pre] = λPost − λPre

τ = E[yist|s = AreaA, t = Post]− E[yist|s = AreaA, t = Pre]

− E[yist|s = AreaB, t = Post]− E[yist|s = AreaB, t = Pre]

In this way, using a regression framework and appropriately defined dummy variables, we
can immediately estimate both the desired treatment effect, as well as its standard error. This
regression setup is extremely convenient for a few reasons:

1. The structure is very generalisable. In the examples so far, we have considered only a case
where there are two states and two time periods. However, by including additional time
dummy variables and additional state dummy variables in our regression model, we can
extend this to a case with many states and/or many time periods. This is a frequently used
estimation technique in the empirical economics literature. For example, the suggested
reading of Almond (2006) provides a very nice example where many years of data are
used, and many states are in both the treated and untreated groups. However a recently
developing literature has shown significant challenges here when treatment effects are
heterogeneous across groups or time. We return to this in section 2.2.2.

2Remember, given multicolinearity and the dummy variable trap, we only need 1 dummy variable if there are
two geographical categories in the regression.
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2. In this structure, we can replace our binary outcome “AreaA” for a variable indicating
treatment intensity. For example, if treatment is not binary, with all states either being
treated or untreated, but rather varies by state, a measure of intensity can be used to
replace AreaA in the interaction term of 2.6. A classic example of this methodology
is provided in Duflo (2001) (see her equation 1). We discuss this more formally when
introducting “Fuzzy Diffindiff” models later in this chapter.

3. When we set up the conditional regression, there is nothing which stops us from con
trolling for additional (time varying) statelevel variables. This allows us to control for
things which we think may otherwise cause the parallel trends assumption not to hold.
We will discuss this further in the next section.

Table 2.1: Regression Interpretation of DifferenceinDifferences

Estimand Estimate

Panel A: Area A
E[yist|s = AreaA, t = Post] α + γ + λ+ τ
E[yist|s = AreaA, t = Pre] α + γ
Single Difference = (α + γ + λ+ τ)− (α + γ) = λ+ τ

Panel B: Area B
E[yist|s = AreaB, t = Post] α + λ
E[yist|s = AreaB, t = Pre] α
Single Difference = (α + λ)− α = λ

Double Difference = (λ+ τ)− λ = τ

2.2.2 TwoWay Fixed Effect Models

Until quite recently, the twobytwo differenceindifferences model was treated as if it gen
erally extended to multiple time periods and treated states, regardless of the context. For ex
ample, Angrist and Pischke (2009, p. 234) state “[i]t’s also easy to add additional states or
periods to the regression setup.”, and Bertrand et al. (2004)’s seminal paper on inference in
differenceindifferences models (which we will discuss later in this chapter) discuss the multi
period multistate model as a “common generalization of the most basic DD setup”. However,
a growing body of work documents that these statements are only true if there is not heterogene
ity in treatment effects estimated, for example if treatment effects are constant over time. This
body of recent work, often with accompanying new methods and computational implementa
tions, show that in the case of heterogeneous treatment effects, the standard “single coefficient”
model may result in estimators which are quite different to what the model aims to capture. Here
we discuss a number of these recent papers. In this whole section, we will consider a generalised
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model of the form of equation 2.2. Equation 2.2 assumes potentially multiple individuallevel
observations for each state s and time period t, and as such includes a subscript i. In many cases
this is also estimated with a single average outcome for each state and year, in which case the
specification can be simplified to:

yst = γs + λt + τwst + εst. (2.7)

These two way fixed effect models are frequently encountered in empirical economics ‘in the
wild’. According to de Chaisemartin and D’Haultfoeuille (2020), 20% of the empirical pa
pers published in the American Economic Review between 20102012 are based on this type of
model.

The Basic Idea

The basic concernwith thesemodels when there aremutliple time periods andmultiple treat
ment states is that states may adopt treatment at different times. Athey and Imbens (2018) refer
to these as “staggered adoption design”. These staggered adoption designs can have important
impacts on the nature of the coefficient estimated from equation 2.2 given that the key variation
in estimating τ̂ comes from the moment when a unit changes treatment status, from nontreated
to treated. Thus, if there are multiple periods, and a unit has already changed treatment status
and is treated across multiple periods, given the nature of the OLS regression estimator it will
itself be seen as a control unit in these periods given the lack of variation in wst across these
periods.

This has been laid out graphically in GoodmanBacon (2021). The key graphs from this
graphical setup (GoodmanBacon’s Figures 1 and 2) are reproduced as Figure 2.2 below. In
panel (a) we see an example where three states are considered (an early treatment indicated
with triangles, a late treatment indicated with circles, and a never treated indicated as a solid
line), with multiple time periods. As GoodmanBacon (2021) (and others) show, the estimated
parameter from 2.2 will consist of all possible combinations of “2 × 2” comparisons. These
“2×2” comparisons are indicated in panel (b) using dark colours in each subpanel. In particular,
here there are two concerns. Firstly, there is one comparison which is somewhat strange, and
that is the comparison indicated in D. Here the “control” group refers to the early treatment
group, which does not change status in the post period, and the “treatment” group refers to the
late treatment group which does change treatment status in this period. And the second issue
is that these four “2× 2” comparisons will not be given equal weight when arriving to a single
coefficient estimate τ̂ . We discuss these with more formal notation now.

Roughly speaking, the weighting issue is that each possible “2×2” comparison will receive
a different weight, with this weight depending positively on the ... To see this formally, we



36 CHAPTER 2. COUNTERFACTUALS FROM THE REAL WORLD

Figure 2.2: GoodmanBacon (2021)’s Graphical Setup with Three Treatment Groups

(a) The General Setting

(b) The DD Decomposition



2.2. DIFFERENCEINDIFFERENCES AND TWOWAY FIXED EFFECT MODELS 37

lay out GoodmanBacon (2021, proposition 1). We will use his notation for comparison with
Figure 2.2. Consider a balanced panel of observations for k = 1, . . . , K groups receiving a
binary treatment t ∈ (1, T ), as well as potentially an untreated group denoted U . The OLS
estimate of equation 2.2 is a weighted average of all possible 2× 2 DD estimators:

τ̂ =
∑
k ̸=U

WkU · β̂2×2
kU +

∑
k ̸=U

∑
l>k

[
W k

kl · β̂
2×2,k
kl +W l

kl · β̂
2×2,l
kl

]
, (2.8)

where here l refers to all units which adopt treatment later than unit k. Thus, the OLS estimate
of the twoway fixed effect estimate actually consists of a weighted mean of three groups of
estimates (the β̂ terms refer to these estimates, and the weights are indicated by W ). These
estimates are precisely those laid out in panel (b) of figure 2.2. Specifically:

β̂2×2
kU ≡

(
ȳ
Post(k)
k − ȳ

Pre(k)
k

)
−
(
ȳ
Post(k)
U − ȳ

Pre(k)
U

)
[GROUPS A & B] (2.9)

β̂2×2,k
kl ≡

(
ȳ
Mid(k,l)
k − ȳ

Pre(k)
k

)
−
(
ȳ
Mid(k,l)
l − ȳ

Pre(k)
l

)
[GROUP C] (2.10)

β̂2×2,l
kl ≡

(
ȳ
Post(l)
l − ȳ

Mid(k,l)
l

)
−
(
ȳ
Post(l)
k − ȳ

Mid(k,l)
k

)
[GROUP D]. (2.11)

In understanding the global estimate, the question of interest relates to the weights given to each
of the groups of estimates listed in equations 2.9, 2.10 and 2.11. These sum to one, and are:

WkU =
(nk + nU)

2V̂ D
kU

V̂ D
(2.12)

W k
kl =

[(nk + nl)(1− D̄l)]
2V̂ D,k

kl

V̂ D
(2.13)

W l
kl =

[(nk + nl)D̄k]
2V̂ D,l

kl

V̂ D
(2.14)

(2.15)

where n refers to the sample share of a particular group in the whole, and D̄ refers to the share
of time that the sample is treated. Finally, the terms V̂ D

kU , V̂
D,k
kl and V̂ D,l

kl refers to how much
treatment varies in each subsample,3 and V̂ D to how much treatment varies overall. This vari
ance is largest when the two groups are closer in size and when treatment occurs closer to the
middle of the considered time period.

While this weighting of the twoway fixed effect estimator is very interesting, what is per
haps more key is that where there is heterogeneity in the effects over time, the OLS estimate
may be a considerably biased estimate of a weighted average of ATTs. While the full deriva
tions are provided in GoodmanBacon (2021, section II), the logic comes from the comparison
between “already treated units” and newly treated units. If the impact of treatment is changing

3This depends positively on having groups which are more equally balanced between treatment and control
units, and the variation in the treatment indicator in the subsample. See equations 79 of GoodmanBacon (2021)
for full definitions.
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over time and already treated units are used as “control” units in future periods, this change in
treatment effect will be mistakenly included as part of the control group. As GoodmanBacon
(2021) states, this “yields estimates that are too small or even wrongsigned”.

A somewhat related discussion, along with a proposed alternative estimator, is provided in
de Chaisemartin and D’Haultfoeuille (2020). We discuss their results, as well as their proposed
“DIDM” estimator, in what follows. To do so, we (roughly)4 follow their notation. That is, we
consider a treatment applied at the level of group S and time T . For each (s, t) ∈ {1, . . . , S}×
{1, . . . , T}, the quantity Ns,t refers to the number of observations in this group s, t, and the
total quantity of observations isN =

∑G
s=1

∑t
t=1 Ns,t. Note that in this case, if there is a single

observation for each state and time period this is not an issue, but the design also allows for mul
tiple observations in each group. For each (i, s, t) ∈ {1, . . . , Ns,t} × {1, . . . , S} × {1, . . . , T},
the variable Di,s,t is the treatment status, and (Yi,s,t(0), Yi,s,t(1)) are potential outcomes with
out and with treatment respectively. Finally, Ds,t, Ys,t(0), Ys,t(1) and Ys,t all refer to simple
averages over i.

de Chaisemartin and D’Haultfoeuille (2020) define β̂fe as the coefficient estimated in the
following (standard) twoway fixed effects regression:

Yi,s,t = β0 + βfeDs,t + µs + λt + εs,t,

which is essentially what we define in equation 2.7. They also define the ATE for any (s,t) cell
as:

∆s,t =
1

Ns,t

Ns,t∑
i=1

[Yi,s,t(1)− Yi,s,t(0)],

and define δTR as:

δTR = E

 ∑
s,t:Ds,t=1

Ns,t

N1

∆s,t

 , (2.16)

where N1 refers to the sum of all treated observations. This quantity δTR is the expectation of
the weighted average of the ATE among all treated units, or in other words, the expectation of
the ATT. One of the key results of de Chaisemartin and D’Haultfoeuille (2020) is to show that
under a series of standard assumptions for differenceindifferences style models5:

βfe = E

 ∑
s,t:Ds,t=1

Ns,t

N1

ws,t∆s,t

 , (2.17)

4I have replaced g for groups with s for states, so that this notation follows more closely what we have been
doing so far.

5These assumptions are (1) a balanced panel over s and t, (2) A “sharp” design where all units of a state receive
treatment at the same time, (3) A no multicolinearity assumption, (4) Strict exogeneity and (5) a paralleltrends
assumption. If you wish to see how equality 2.16 is shown, refer to de Chaisemartin and D’Haultfoeuille (2020)
proof of theorem 1 in their appendix A. This is not necessary for this course.
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where:
ws,t =

εs,t∑
s,t:Ds,t=1

Ns,t

N1
εs,t

, (2.18)

and εs,t is the residual from a regression ofDs,t on state and time fixedeffects. This is important,
given that it implies that generally βfe ̸= δTR, or in other words, β̂fe is a biased estimator of
the ATT. This is clear in comparing 2.16 with 2.17. The existence of the weighting term in 2.17
implies that certain groups’ treatment effects will be given more or less weight. And what is
most worryingwith this result is thatws,t can be negative. In their Proposition 1 de Chaisemartin
and D’Haultfoeuille (2020) show that these negative weights are more likely when:

• The ATE of interest is in a period in which a larger fraction of units are treated

• The ATE is for a group which is treated for many periods

A somewhat related decomposition is provided in Athey and Imbens (2018, Lemma 5) (who
additionally go on to discuss a number of very important points on inference), however their
baseline assumptions and final result are somewhat different. In section 3.1 of their paper
de Chaisemartin and D’Haultfoeuille (2020) provide a simple numerical illustration. We con
sider a different example later on in this section of these notes.

What Should we do?

de Chaisemartin and D’Haultfoeuille (2020) propose an alternative estimator that is suitable
for heterogeneous treatment effects. They define the quantity:

δS = E

 1

NS

∑
(i,s,t:t≥2,Ds,t ̸=Ds,t−1)

[Yi,s,t(1)− Yi,s,t(0)]


where NS refers to the quantity of treated units in the indicated cells. δS is thus the ATE for all
cells that change their treatment status (eg from 0 to 1), at the moment that they begin to receive
their new treatment. Under a series of assumptions laid out in their paper – including a common
trends assumption6 – thy suggest that this can be estimated using the following quantities. First
define:

DID+,t =
∑

s:Ds,t=1,Ds,t−1=0

Ns,t

N1,0,t

(Ys,t − Ys,t−1)−
∑

s:Ds,t=Ds,t−1=0

Ns,t

N0,0,t

(Ys,t − Ys,t−1)

which compares the evolution of average outcomes in units changing treatment status between

6Specifically, they assume “Common trends for Y (1)”, or that: for t ≥ 2, E(Ys,t(1) − Ys,t−1) does not vary
across s.
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t− 1 and t with those who remain unchanged. Similarly, if relevant,

DID−,t =
∑

s:Ds,t=Ds,t−1=1

Ns,t

N1,1,t

(Ys,t − Ys,t−1)−
∑

s:Ds,t=0,Ds,t−1=1

Ns,t

N0,1,t

(Ys,t − Ys,t−1)

captures the change between mean outcomes between t− 1 and t comparing those units which
stop receiving treatment to units whose treatment status remains unchanged. In the case of stan
dard “staggered” two way FE models where units adopt treatment and are then treated forever
after, DID−,t will not exist, and so will be set as 0 by definition. Then, they propose their
DIDM estimator es as the weighted average of these quantities over all time periods:

DIDM =
T∑
t=2

(
N1,0,t

NS

DID+,t +
N0,1,t

NS

DID−,t

)
.

They show that under their assumptions, E[DIDM ] = δS , a potentially more reasonable treat
ment estimator to consider. A similar estimator is proposed in Imai andKim (2020). One benefit
of this estimator is that we can use a similar version to consider both placebo tests, as well as dy
namic treatment effects. de Chaisemartin and D’Haultfoeuille (2020) propose using the same
structure of the DIDM estimator to estimate placebo versions, where rather than comparing
changes between groups and t− 1 and t, we compare lagged treatments, for example between
t− 2 and t− 1. These are placebos as if we believe that parallel trends hold, we should see that
these estimates prior to treatment do not result in any significant treatment effect. Similarly, we
can consider dynamic treatment effects if rather than comparing changes between t − 1 and t,
we compare changes between the baseline difference, and other future periods, such as between
t − 1 and t + 1, between t − 1 and t + 2, and so forth. They provide software to implement
these estimators (and more), which we will discuss slightly later in this section.

Like de Chaisemartin andD’Haultfoeuille (2020), Callaway and Sant’Anna (2021) also start
their analysis considering group and time specific treatment effects, focusing on ATT (s, t) for
groups (which here we denote s) at different time periods t. Based on these groupspecific treat
ment effects, Callaway and Sant’Anna (2021) discuss “making inference about, …, funciontals
of ATT (s, t)”.7 Among other things, starting with group and time specific treatment effects
allows for the consideration of various types of heterogeneity, including heterogeneity by time
of adoption, and by time since adoption.

While Callaway and Sant’Anna (2021) discuss a more complex estimator when controls are
required, if a standard paralleltrends assumption holds, they note that

ATT (s, t) = E[Yt − Ys−1|Gs = 1]− E[Yt − Ys−1|C = 1].

7Callaway and Sant’Anna (2021) use the letter g to refer to groups, whereas here we are using s for consistency
with earlier discussion.
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whereGs is a binary indicator taking one if a state is first treated in period s. Thus, here states are
indexed by their treatment time, called s. In the case that a state is never treated, it is included in
controls, and the binary variable C = 1 for these units, and 0 otherwise. Thus, states must have
one and only one value arcoss all variables Gs (∀s) and C. They call this quantity ATT (s, t)

the “Group Average Treatment Effect” as it will (potentially) be different for each treatment
group s and time period t. Their paper focuses on how to best aggregate these treatment effects
in a logical way, and they suggest a range of estimators. Their most simple aggregates are:

2

T (T − 1)

T∑
s=2

T∑
t=2

1{s ≤ t}ATT (s, t) and
1

κ

T∑
s=2

T∑
t=2

1{s ≤ t}ATT (s, t)P (G = s)

where T is the final treatment period, and 1{·} is a binary indicator implying the indicated
condition should be met. Thus, these estimators thus weight all observed ATTs, either with the
sameweight for each group and year (lefthand case) or depending on their frequency in the data
(right hand case). This avoids the weighting issue laid out by (among others) de Chaisemartin
and D’Haultfoeuille (2020). However, Callaway and Sant’Anna (2021) also show that there are
various other estimators that likely make sense, including estimates aggregated by:

• the period when units are first treated

• the amount of time the treatment has been in place (dynamic treatment effects)

• the effect in a given calendar year (calendar time effects).

In their paper they provide full derivations, estimation and inference details, and an illustration
based on the effect of the US minimum wage and teen employment.

A Discussion on Practical Issues

Fortunately many of the recent advances in this literature come with accompanying compu
tational routines, frequently written for R or for Stata. For example, GoodmanBacon’s decom
position has been implemented in Stata as bacondecomp (GoodmanBacon et al., 2019), and a
version is also available in R. The methods of de Chaisemartin and D’Haultfoeuille (2020) are
available in Stata provided by de Chaisemartin et al. (2019b) (for implementing their proposed
DIDM estimator) and de Chaisemartin et al. (2019a) (for calculating the weights of all treat
ment effects. The estimators proposed by Callaway and Sant’Anna (2021) are available in R
as the “did” package (Callaway and Sant’Anna, 2020). These are a tremendous resource for
simply implementing the latest methods designed for causal inference in models of these types,
however it is important to understand the methods behind the libraries before simply diving into
estimation. We will discuss a simple example further below.
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A Numerical Example

The results from GoodmanBacon and those of de Chaisemartin and D’Haultfoeuille (2020)
are similar, however they take quite different paths to get there. GoodmanBacon’s (like that
laid out in Athey and Imbens (2018)) is “mechanical” in that it is based on the underlying diff
indiff comparisons. The result in de Chaisemartin and D’Haultfoeuille (2020) is based on a
potential outcomes framework and a series of assumptions underlying the regression. This
to examine how these methods work requires somewhat different frameworks. In the case of
GoodmanBacon (2021), we should consider all possible DD comparisons, while in the case of
deChaisemartin andD’Haultfoeuille (2020)we should consider each unit’s ATE,which requires
knowing the observed and counterfactual state. To examine this in a more applied way, let’s
consider a construted example.

Consider a panel of 3 states/areas, over the 10 years (t) of 2000 to 2009. One of these units
is entirely untreated (unit=1), one is treated at time period 2003 (unit=2), and the other is treated
at time period 2006 (unit=3). We will consider a simplecase where the actual datagenerating
process is known as:

yunit,t = 2+0.2× (t− 2000)+ 1×unit+β1× post×unit+β2× post×unit× (t− treat).

In this mode unit refers to the unit number listed above (1, 2 or 3), post indicates that a unit is
receiving treatment in the relevant time period t, and treat refers to the treatment period (2003
for unit 2, and 2006 for unit 3). We will examine this setup in R and Stata code in class.8 This
specification allows for each unit to have its own fixed effect, given that unit is multiplied by 1,
and allows for a general time trend increasing by 0.2 units each period across the whole sample.
The impact of treatment comes from the units β1 and β2. The first of these, β1, captures an
immediate unitspecific jump when treatment is implemented which remains stable over time.
The second of these, β2, implies a trend break occurring only for the treated units once treatment
comes into place. We will consider 2 cases below. In one case β1 = 1 and β2 = 0 (a simple
case with a constant treatment effect per unit), and in a second case β1 = 1 and β2 = 0.45 (a
more complex case in which there are heterogeneous treatment effects over time. These two
cases are plotted in panels (a) and (b) respectively of Figure 2.3.

Below each panel of the plot we provide the decomposition of each treatment effect follow
ing the formulae of GoodmanBacon (2021) and de Chaisemartin and D’Haultfoeuille (2020).
Note that in the case of GoodmanBacon (2021) this requires calculating four specific effects,
which are the comparisons of each treated unit with the untreated unit, and each treated unit
with each other. In the simple decomposition these are constant effects of 3 and 2 for early and
later treated units given that the “treatment effect” is simply 1 × unit in each case. However,
in the second case this is more complicated, as we must take into account the time trends. This

8Refer to twowayfe.R and twowayfe.do.
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results in the surprising behaviour flagged by GoodmanBacon (2021) where despite each unit
specific treatment effect being positive, the parameter β̂2×2,l

kl is actually negative given that it
compares the change from the lateradopting unit (unit 2) with the unchanging portion of the
earlieradopting unit (unit 3), where the treatment effect for unit 3 grows more over time than
that of unit 2.

Below the decomposition following GoodmanBacon, we present the decomposition of
de Chaisemartin and D’Haultfoeuille (2020). Here we must calculate an ATE for each unit
which recevies treatment in each period, where the counterfactual case simply refers to the out
come had β1 and β2 been 0. Here, we once again see why the total treatment effect (called
βfe) in de Chaisemartin and D’Haultfoeuille (2020) is not a simple average of all unitspecific
treatment effects. Given the proportions of treated and untreated observations for each unit,
the post2006 ATEs for unit 3 are given 0 weights, and hence form no part of the global ATT.
Note that if we change the time period when units first receive treatments, this weight can even
turn negative (for example if unit 3 first receives treatment prior to 2003, or unit 2 first receives
treatment after 2006). We will explore this in more depth in the R and Stata codes, which also
examine how the estimators proposed by de Chaisemartin and D’Haultfoeuille (2020) result in
a much more logical treatment effect.
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Figure 2.3: A Numerical Example of TimeVarying Treatment Effects
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(b) Decomposition with trends

(a) Simple Decomposition (b) Decomposition with trends
β̂ Weight β̂ Weight

GoodmanBacon
β̂2×2
kU 3 0.318 7.05 0.318

β̂2×2
lU 2 0.364 3.35 0.364

β̂2×2,k
kl 3 0.136 4.35 0.136

β̂2×2,l
kl 2 0.182 1.38 0.182

τ̂ 2.45 1 3.8 1

de Chaisemartin and D’Haultfoeuille
β̂2,2006 2 0.136 2 0.136
β̂2,2007 2 0.136 2.9 0.136
β̂2,2008 2 0.136 3.8 0.136
β̂2,2009 2 0.136 4.7 0.136
β̂3,2003 3 0.152 3 0.152
β̂3,2004 3 0.152 4.35 0.152
β̂3,2005 3 0.152 5.7 0.152
β̂3,2006 3 0 7.05 0
β̂3,2007 3 0 8.4 0
β̂3,2008 3 0 9.75 0
β̂3,2009 3 0 11.1 0

β̂fe 2.45 1 3.8 1
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2.2.3 Inference in DiffinDiff

Up to this point, we have principally focused on estimation of differenceindifferences
and twoway fixed effect models. However, there is a long literature pointing to important
inferential considerations which must be taken into account for the estimation of appropriate
standard errors and the construction of appropriate confidence intervals.

A Brief Review of Variance and Standard Error Estimation As you will remember from
prior econometrics courses, estimating standard errors correctly relies on the GaussMarkov
assumptions. However, in many cases, it is hard to assume that the εit terms are i.i.d. For one,
we may expect that individual outcomes in the same area and the same year may be correlated:
Cov(εit, εjt|si = sj) ̸= 0. We would also expect shocks which affect each group to be serially
correlated over time (Cov(εit+1, εjt|si = sj) ̸= 0). Bertrand et al. (2004) discuss many of these
issues in their paper “How Much Should We Trust DifferencesinDifferences Estimates?”.

The most commonly used solution to this problem is to cluster standard errors at the group
level. To see how this works, let’s start with the most basic “plain vanilla” standard errors.
As you will likely recall, we calculate standard errors from the variancecovariance matrix of
our OLS estimators β. In particular, the standard errors are the square root of the variance of
a particular estimator (or the square root of the diagonal of the variancecovariance matrix).
For now, let’s consider a simple model with a single independent variable xi and a dependent
variable yi, each of which have been demeaned for simplicity. We can thus write the formula
for the variancecovariance matrix as follows:

V (β̂) =
V
[∑N

i=1 xiui

]
(∑N

i=1 x
2
i

)2
where ui refers to the residual term of our OLS model.

Of course we never actually observe ui, so to arrive at an estimable variancecovariance
matrix we need to go slightly further. In the simplest case where we assume that errors are
completely uncorrelated, the numerator of this variancecovariance matrix is: V

[∑N
i=1 xiui

]
=∑N

i=1 V [xiui] =
∑N

i=1 x
2
iV [ui] =

∑N
i=1 x

2
iσ

2, and the variance is thus:

V̂ (β̂) =
σ̂2∑2
i=1 x

2
i

.

Note in the above that now we add a hat to the V term as it is an estimated quantity, and that
this estimate depends on σ2, which is estimated by OLS as σ̂2 =

∑N
i=1 û

2
i /(N −K).

This most basic calculation for V̂ (β̂) assumes that the variance of ui is constant for all obser
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vations (homoscedasticity). From introductory econometrics courses we already know of one
type of loosening of this most basic variancecovariance matrix, and this is the heteroscedastic
ity robust version of White (1980).

V̂ (β̂)H =

(∑N
i=1 x

2
i û

2
i

)
(∑2

i=1 x
2
i

)2 .

In the above we add a subscriptH to indicate that it is heteroscedasticity robust, where we note
that we now allow arbitrary correlations between xi and ui in the numerator term.

However, what we want with clustered standard errors is not that an individual’s error term
can depend on their own level of xi, but rather that the error of one individual can be corre
lated with error of another individual! So then, we need to allow for a further loosening of
the variancecovariance matrix to build in this crossunit dependence. This brings us to the
clusterrobust version:

V̂ (β̂)C =

(∑N
i=1

∑N
j=1 xixjûiûj1{i, j from the same cluster}

)
(∑2

i=1 x
2
i

)2 .

In this formula, 1 is an indicator function equal to one if two individuals share a cluster, and 0
otherwise. This avove variancecovariance matrix now permits not only homoscedasticity, but
also arbitrary correlation between units within clusters. This is what we generally prefer to use
in differenceindifference estimates.

This variance term is typically larger than the “standard” variance term of OLS, and the
degree to which the cluster robust variance inflates the (overly precise) standard variance is
known as the “Moulton factor”, after the paper which laid this out (Moulton, 1986). For addi
tional discussion, see Moulton (1986) or Angrist and Pischke (2009, chapter 8), but note that in
general, the downward bias in the standard OLS variance general increases to the degree that:

(a) The size of clusters is larger

(b) The correlation within the cluster for the variable of interest

(c) The correlation within the cluster of the error term.

Practical Considerations in Variance Estimates This formula is presented in matrix form
in Cameron et al. (2008). Consider a regression model where observations i are clustered in
groups s:

yis = x′
isβ + uis for i = 1, . . . , N, s = 1, . . . , S.
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This can be aggregated to the level of the cluster as:

ys = Xsβ + us, s = 1, . . . , S,

or simply in matrix form as:
y = Xβ + u,

Here, the clusterrobust variancecovariance estimator (CRVE) can be written in matrix form
as:

V̂CR(β̂) = (X ′X)−1

(
S∑

s=1

Xsûsû
′
sX

′
s

)
(X ′X)−1, (2.19)

where ûsû
′
s estimates the intracluster correlation. The standard solution for differencein

difference style models is to allow for withincluster autocorrelation by using a CRVE such as
the above to estimate standard errors and confidence intervals on regression parameters. Such
an estimator is provided as standard in Stata by specifying the vce(cluster clustvar) option
in regression models. However, as has been extensively documented (eg Cameron and Miller
(2015)), standard CRVEs are only asymptotically valid, where the asymptotic behavior depends
on the number of clusters S → ∞. When standard clustering is used based on ‘too few’ clusters,
the CRVE is generally downwardbiased, resulting in overrejection of null hypotheses. This
bias occurs becauseE(ûsû

′
s) ̸= usu

′
s in equatiuon 2.19, with the latter term being the true intra

cluster variation. While in general, computational packages make small sample corrections for
this bias9, in certain cases this bias can be severe (Cameron and Miller, 2015; Mackinnon and
Webb, 2018), even using these standard corrections.

Thus, while clustering is computationally simple, clustered standard errors are generally
only correct if “enough” clusters are included. This implies that for clustered standard errors to
hold in diffindiff regressions, a sufficient number of treatment and nontreatment states must
exist. In practice, knowing how many clusters it ‘too few’ depends on a number of factors.
While there are rules of thumb such as the rule of 42 laid out in Angrist and Pischke (2009)
which suggests that standard clustering provides a good approximation if S ≥ 42 clusters, the
performance of these methods under simulation has been shown to depend also on the relative
size of clusters (Mackinnon and Webb, 2017). A range of results surveyed in Cameron and
Miller (2015) leads to their suggestion that if one is analyzing data with fewer than 50 clusters
in a stateyear panel (such as the case with panelevent studies), alternative inference methods
should be considered.

9For example, Stata estimates the CRVE as:

V̂CR(β̂) = (X ′X)−1

(
S∑

s=1

Xsũsũ
′
sX

′
s

)
(X ′X)−1,

where ũs =
√
cûs, with c being a small sample correction c = (S/(S−1))×((N−1)/(N−k)) and û = y−Xβ̂

are standard regression residuals (Cameron et al., 2008).
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However, what should we do if we have an application in which we would like to cluster our
standard errors, but don’t have a large enough number of clusters? It is important to note that
the answer most certainly is not ‘just cluster anyway’. If we use traditional clustered standard
errors with a small number of clusters we will very likely underestimate our standard errors, and
thus overreject null hypotheses. Fortunately, alternative solutions do exist. The most common
solution is to use a wild cluster bootstrap. This is based on the logic of the bootstrap. The
bootstrap, from Efron (1979) is a resampling procedure. In this case, rather than calculating
standard errors analytically (ie using a formula), we simulate many different samples of data,
and based on estimates from each sample we can observe the variation in underlying parameters
of interest, and hence build confidence intervals and rejection regions. The idea of the bootstrap
is that we should treat the sample as the population. Then we can draw (with replacement) many
samples of sizeN from this “population”, and for each of these resamples we can calculate our
estimator of interest, arriving at a distribution for the estimator and hence confidence intervals
and standard errors. The wild bootstrap is simply a type of bootstrap procedure where we
resample respecting the original clusters in our data. We will discuss this at more length in an
example in class.

In this case where the quasiexperimental setup is based on fewer than around 50 clusters,
the wild cluster bootstrap has been documented to be a successful resamplingbased method
to take account of autocorrelation in variables underlying panel event studies, even in cases
with fewer clusters (see eg Cameron et al. (2008); Cameron and Miller (2015); Roodman et al.
(2019)). This has been efficiently implemented in Stata as described in Roodman et al. (2019),
and programmed for Stata as boottest (Roodman, 2015). Finally, note that in the case of
very few clusters, and in particular few clusters where an event occurs, inference is further
complicated. In cases such as this a number of potential solutions have been proposed, such as
those described in Mackinnon andWebb (2018); Conley and Taber (2011). If you are interested
in further details these papers will provide a comprehensive background.

2.2.4 Testing DiffinDiff Assumptions

In the preceding sections, we have seen that inferring causality in twoway fixed effect and
differenceindifference models relies crucially on the validity of the parallel trends assumption.
If average outcomes in treatment and control areas would have followed different trends even
in the absence of treatment, any estimated parameters will reflect both variations in prevailing
trends, as well as the true treatment effect. While this is not something that we can ever test
formally given that it requires observing the (unobserved) counterfactual state, one thing that
we can sometimes do is formally examine how trends in outcomes treated and untreated areas
were evolving prior to the reform. While this does not amount to a formal test of the parallel
trend assumption, it would cast suspicion on our model assumptions if parallel trends did not
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even hold in the pretreatment window.

One particular case in which these parallel pretrends will not hold is the case of the socalled
“Ashenfelter dip”. This Ashenfelter dip, named for the labour economist Orley Ashenfelter, and
particularly the results in Ashenfelter (1978), recognises that often participants in labour market
training programs have a reduction earnings immediately before participation in the program.
The logic of this is that if individuals selfselect into training programs, many of those who
select in will be those who have lost their job, and hence particiapte in the training program as
part of a job search. This pattern of outcomes has been shown in a wide array of labour market
training programs (see, for example, (Heckman and Smith, 1999)). The trouble with this sort
of dynamics is that these reductions in mean salary are largely transitory, and the participants
would have experienced an increase in salary in the following years even in the absence of the
program. In other words, participants and nonparticipants would not have followed parallel
trends, as participants should recover their earlier earnings, while nonparticipants face no such
dynamic.

There exist a number of ways to examine the validity of the parallel trends assumption,
which will identify, among other things, the Ashenfelter dip. However, even using these tech
niques, in no case can we ever prove definitively that it holds; we can only provide evidence
suggestive that it is a reasonable assumption to make10. You could think of tests of this type
as analogous to tests of instrumental overidentification. While they are not definitive proofs of
assumptions, they at least provide some evidence that they aren’t entirely unreasonable in the
context examined.

If multiple pretreatment periods of data are observed, the simplest test is to remove all
posttreatment data, and run the same specification, but using a placebo which tests whether
any differences are found between treatment and control states entirely before the reform had
been implemented. If we do find that there is a difference over time even in the absence of the
reform, this may be quite concerning when moving to the postreform case. A more extensive
test of the validity of the parallel trends assumption is the use of the “panel event study analysis”,
which additionally allows us to examine the dynamics of any treatment effects postreform.

An event study can be thought of as a test following the ideas of Granger Causality (Granger,
1969). If it is the case that the reform is truly causing the effect, we should see that any differ
ences between treatment and control states emerge only after the reform has been implemented,
and that in all years prior to the reform, differences between treatment and nontreatment areas
remain constant. Thus, the basic idea behind the panel event study is that we should observe
how outcomes in treated versus untreated areas evolve in the prereform period (relative to a
baseline omitted category), as well as how the evolve once the reform has been put in place.

10This is just another example of the “fundamental problem of causal inference” of Holland (1986) that we
discussed earlier in this lecture series.
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A graphical example of what these sorts of test look like is provided below in figure 2.4.
This presents rates of maternal mortality surrounding the adoption of a parliamentary gender
quota (see Bhalotra et al. (2020)). In this case in each prereform period, no difference is ob
served between trends of maternal mortality in treatment and nontreatment areas. Following
the reform however, a significant reduction in the outcome variable is seen in the treatment
areas when compared to nontreatment areas. Results of this type provide significant support
for the validity a differenceindifference methodology, with the added benefit that we can also
consider the dynamics of the effect of the reform over time. We turn to the specifics of this
design in the following section.

Figure 2.4: Event Study Graph and Reform Timing
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2.2.5 The Panel Event Study Model

There is a burgeoning literature discussiong panel event study methods, including the work
of Borusyak and Jaravel (2018); Freyaldenhoven et al. (2019); Schmidheiny and Siegloch (2019).
The discussion in this section is drawn from Clarke and Tapia Schythe (2020), which provides
background, and a review of estimation in Stata. In laying out the panel event study, consider
a panel covering states s and time periods t. We are interested in estimating the impact of the
passage of an event which may occur at different times in different states (what we have been
calling a staggered assignment design above). We will denote as Events a variable recording
the time period t in which the event is adopted in state s. Denoting the outcome of interest as
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yst, the panel event study specification can be written as11:

yst = α +
J∑

j=2

βj(Lag j)st +
K∑
k=1

γk(Lead k)st + µs + λt +X ′
stΓ + εst. (2.20)

Here µs and λt are state and time fixed effects, Xst are (optionally) timevarying controls, and
εst is an unobserved error term. In equation 2.20, lags and leads to the event of interest are
defined as follows:

(Lag J)st = 1[t ≤ Events − J ], (2.21)

(Lag j)st = 1[t = Events − j] for j ∈ {1, . . . , J − 1}, (2.22)

(Lead k)st = 1[t = Events + k] for k ∈ {1, . . . , K − 1}, (2.23)

(LeadK)st = 1[t ≥ Events +K]. (2.24)

Lags and leads are thus binary variables indicating that the given state was a given number of
periods away from the event of interest in the respective time period. J and K lags and leads
are included respectively, and, as indicated in equations 2.21 and 2.24, final lags and leads
“accumulate” lags or leads beyond J and K periods. A single lag or lead variable is omitted
to capture the baseline difference between areas where the event does and does not occur. In
specification 2.20, as standard, this baseline omitted case is the first lag, where j = 1.

A stylized example of such a setting is provided in Table 2.2. We consider four states
forming a balanced panel of years from 20002009. The Events variable occurs at different
times in different states, and in the case of one state, does not occur. Here both four lags and
four leads are included, such that J = K = 4. Lag and Lead 4 (exclusively) are switched on
for periods in which the “Time to Event” exceeds 4 lags or leads respectively.

11There are a number of ways to specify such a model. Slightly different notations are used by Schmidheiny
and Siegloch (2019) who define the model as:

yst =

j∑
j=j

βjb
j
st + µs + λt + εst,

where

bjst =


1[t ≤ Events + j] if j = j

1[t = Events + j] if j < j < j

1[t ≥ Events + j] if j = j,

and where j is equivalent to our definition of J and j is equivalent to our L. In the case of Freyaldenhoven et al.
(2019), they define a version of this model as:

yst = δ−K+(1− zs,t+(K−1)) + δL+zs,t−L +

K−1∑
k=−(L−1)

δ−k∆zs,t+k + µs + λt + εst,

where zst ≡ PostEventst as defined in Table 2.2, zs,t+k and zs,t−k refer to lags and leads of this variable
respectively, and∆ refer to the first difference of these lag/lead terms. These models, and that laid out in equations
2.202.24 are equivalent.
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Table 2.2: A Stylized Example of a Panel Event Study

State Year Event Post Time to Lag Lag Lag Lag Lead Lead Lead Lead Lead
(s) (t) Event Event 4 3 2 1 0 1 2 3 4

State A 2000 2004 0 4 1 0 0 0 0 0 0 0 0
State A 2001 2004 0 3 0 1 0 0 0 0 0 0 0
State A 2002 2004 0 2 0 0 1 0 0 0 0 0 0
State A 2003 2004 0 1 0 0 0 1 0 0 0 0 0
State A 2004 2004 1 0 0 0 0 0 1 0 0 0 0
State A 2005 2004 1 1 0 0 0 0 0 1 0 0 0
State A 2006 2004 1 2 0 0 0 0 0 0 1 0 0
State A 2007 2004 1 3 0 0 0 0 0 0 0 1 0
State A 2008 2004 1 4 0 0 0 0 0 0 0 0 1
State A 2009 2004 1 5 0 0 0 0 0 0 0 0 1
State B 2000 2005 0 5 1 0 0 0 0 0 0 0 0
State B 2001 2005 0 4 1 0 0 0 0 0 0 0 0
State B 2002 2005 0 3 0 1 0 0 0 0 0 0 0
State B 2003 2005 0 2 0 0 1 0 0 0 0 0 0
State B 2004 2005 0 1 0 0 0 1 0 0 0 0 0
State B 2005 2005 1 0 0 0 0 0 1 0 0 0 0
State B 2006 2005 1 1 0 0 0 0 0 1 0 0 0
State B 2007 2005 1 2 0 0 0 0 0 0 1 0 0
State B 2008 2005 1 3 0 0 0 0 0 0 0 1 0
State B 2009 2005 1 4 0 0 0 0 0 0 0 0 1
State C 2000 . 0 . 0 0 0 0 0 0 0 0 0
State C 2001 . 0 . 0 0 0 0 0 0 0 0 0
State C 2002 . 0 . 0 0 0 0 0 0 0 0 0
State C 2003 . 0 . 0 0 0 0 0 0 0 0 0
State C 2004 . 0 . 0 0 0 0 0 0 0 0 0
State C 2005 . 0 . 0 0 0 0 0 0 0 0 0
State C 2006 . 0 . 0 0 0 0 0 0 0 0 0
State C 2007 . 0 . 0 0 0 0 0 0 0 0 0
State C 2008 . 0 . 0 0 0 0 0 0 0 0 0
State C 2009 . 0 . 0 0 0 0 0 0 0 0 0
State D 2000 2007 0 7 1 0 0 0 0 0 0 0 0
State D 2001 2007 0 6 1 0 0 0 0 0 0 0 0
State D 2002 2007 0 5 1 0 0 0 0 0 0 0 0
State D 2003 2007 0 4 1 0 0 0 0 0 0 0 0
State D 2004 2007 0 3 0 1 0 0 0 0 0 0 0
State D 2005 2007 0 2 0 0 1 0 0 0 0 0 0
State D 2006 2007 0 1 0 0 0 1 0 0 0 0 0
State D 2007 2007 1 0 0 0 0 0 1 0 0 0 0
State D 2008 2007 1 1 0 0 0 0 0 1 0 0 0
State D 2009 2007 1 2 0 0 0 0 0 0 1 0 0
Example provided in Clarke and Tapia Schythe (2020).
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States in which the event never occurs (such as State C in Table 2.2) act as pure controls.
These units have 0s in all lag and lead terms, and act as the counterfactual on which the estima
tion of impacts is based. Differences between these pure controls states and states which adopt
the event of interest are anchored at 0 in the omitted base period, ie the first lag in equation 2.20.
Hence, lags and leads capture the difference between treated and control states, compared to the
prevailing difference in the omitted base period. Unbiased estimation of postevent treatment
effects thus relies fundamentally on the so called “parallel trends assumption”. In the absence
of treatment, it is assumed that treated and control states would have maintained similar dif
ferences as in the baseline period. For this reason, these models have been demonstrated to be
underidentified, or identified only up to a linear trend, when all units adopt treatment at some
point in time (Schmidheiny and Siegloch, 2019; Borusyak and Jaravel, 2018). Schmidheiny
and Siegloch (2019) show that in this case, it is necessary to bin lags and leads beyond certain
maximum lag (J) and lead (K) periods.

The panel event study is an extension of the standard twoway fixed effect (sometimes
called differenceindifferences) model, where a single “Post Event” indicator is included for
all periods posterior to the occurrence of the event in treated states. This is simply:

yst = α + βPostEventst + µs + λt +X ′
stΓ + εst, (2.25)

where following the notation from (2.21)(2.24), PostEventst = 1[t ≥ Events]. Estimation of
event specification 2.20 provides two key pieces of information not observable in this single
coefficient model. Firstly, the full set of event leads allows for the inspection of parallel trends in
the pretreatment period. While this does not provide evidence that the units in which the event
was adopted and not adopted would have necessarily followed similar trends in the postreform
period (KahnLang and Lang, 2019) (which is the identifying assumption of these models), if
trends in treated and untreated areas were not parallel even preevent, it is unlikely that they
would be parallel postevent. Secondly, the policy lags allow for inspection of the temporal
nature of treatment effects, noting for example, any dynamics in the appearance of effects, for
example growing or shrinking over time, and whether effects are transitory or permanent.

While the results from papers such as GoodmanBacon (2021) suggest that the esimation of
panel event studies resolves concerns owing to heterogeneity in treatment effects and staggered
adoption designs, results from Sun and Abraham (2020) suggest that specific types of hetero
geneity concerns remain even in panel event study models. In particular, they note undesired
weighting of treatment effects if there is heterogeneity across treatment groups in particular lag
and lead terms. Other concerns exist in event study designs, such as possible inferential prob
lems related to selective survival of models based on pretrend tests (Roth, 2019). It is worth
noting that along with the estimators discussed earlier in this section of de Chaisemartin and
D’Haultfoeuille (2020); Callaway and Sant’Anna (2021), there are other alternatives includ
ing the stacked DD procedure of Sun and Abraham (2020), and sensitivity tests related to these
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panel event studies described in Roth (2019); Rambachan and Roth (2019) (with accompanying
R code).

2.2.6 Other Extensions to DiffinDiff Methods

DifferenceinDifferenceinDifferences

Differenceindifferences estimates frequently provide a good test for the impact of some
reform. However, what can we do if we think that simply capturing a baseline difference
in treatment and nontreatment areas is not enough? One option is to extend a the diffin
diff approach to a diffindiffindiff (triple differences) approach! This follows the logic of
differenceindifferences, however estimates the diffindiff model for two groups: one which
is affected by the reform and one which isn’t. If the group which is not affected by the reform
has any change over time, this is then substracted from the main diffindiff estimate to give a
triple difference estimate.

Perhaps the best way to think of this is to examine an applied example. Muralidharan and
Prakash (2013) estimate a triple differences framework to estimate the effect of a program in
the state of Bihar, India which gave girls (but not boys) funds to buy a bike to travel to school.
As they point out, the logical difference in difference approach is to compare the change in
enrollment rates of girls in Bihar before and after treatment with the change in enrollment rates
of boys in the same state. This precisely follows the logic of the previous section of two groups
in two locations. However, they are concerned that boys and girls were following different
trends in highschool enrollment rates even before the reform. In order to control for this, they
thus estimate the same regression in two states: Bihar, the treatment state, and Jharkhand, a
nearby but untreated state.

The mechanics of actually estimating a regression are similar to specification 2.6, however
now must account for the triple interactions. Defining subscript g to refer to gender now, they
thus estimate:

yisgt = β0 + β1Bihars + β2Girlg + β3Postt + β5(Bihars ×Girlg) + (2.26)

β6(Bihars × Postt) + β7(Postt ×Girlg) + τ(Bihars ×Girlg × Postt) + εist.

In this case, the treatment effect τ is captured by the triple interaction term. If you find all these
interactions hard to follow, you may want to figure out what each coefficient is capturing as per
the system of coefficient equations laid out in section 2.2.1!
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“Fuzzy” DifferencesinDifferences

So far, when discussing differenceindifferences and twoway fixed effect methods, we
have assumed that all units of a state receive treatment at a given point in time, and other states
exist which never receive treatment to act as control states. However, as (de Chaisemartin
and D’Haultfoeuille, 2017) lay out, at times it may be that some treatment is applied, and the
share of units receiving treatment may increase more in certain states than in other states. They
call such a case “Fuzzy DifferencesinDifferences”, to distinguish it from the standard “sharp”
design. In this case, the standard method is to calculate the treatment effect by calculating the
differenceindifference effect of the treatment variable on the outcome of interest, and then
scaling by the impact of the treatment variable on the likelihood that one effectively receives
treatment. Thus, to the degree that treatment does not increase completely, we will scale up the
estimated effect to correct for the fact that only a sample of units were treated. We will return
to such a design in the following section of these notes when discussing instrumental variables
and “local average treatment effects.”

One of the key results from (de Chaisemartin and D’Haultfoeuille, 2017) is to fully define
the conditions under which this type of estimate will capture an unbiased average treatment
effect, and to characterise the group for which this ATE will hold. In particular, they note that
as well as a parallel trends assumption, we require assumptions that:

1. The ATE of units treated at multiple dates must be stable over time

2. When the share of treated units changes over time in control groups, the treatment effect
for switchers in both treatment and control groups should be the same.

A second key contribution is that they propose alternative esitmators which can be used when
the share of treated units in “control” groups is stable over time, and which no longer rely on
these two additional assumptions.

2.3 Synthetic Control Methods

If, despite all our best efforts with differencesindifferences, event studies, or even triple
differences, we do not manage to satisfy ourselves that parallel trends are met, fortunately all
hope is not yet lost. One way to proceed even in the absence of parallel trends is by using
synthetic control methods. These synthetic control methods aim to construct a “synthetic” (ie
statistically produced) control unit for comparison with the true treatment unit. The synthetic
control group is—similar to matching—formed using a subset of all potential controls, which
are also known as donor units. These donor units are combined in a manner to track as closely
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as possible the trend in the true treatment group in the prereform periods. The logic behind the
method is to form a comparison group as similar as possible to the control group considering
only the pretreatment data, and observe what happens once the treatment has taken place. If
the synthetic control is a good match with the treatment group, all else constant, they should
follow identical paths in the postreform period. However, given that only the treatment group
is affected by treatment receipt, we infer that any posttreament divergence in trends is due to
the receipt of treatment itself. These methods, first discussed in Abadie and Gardeazabal (2003)
were formalised in Abadie et al. (2010), whose exposition we follow below.

Graphically, figure 2.5 provides an example of the synthetic control process. In panel (a),
we observe that outcomes in the treatment area (California) clearly diverge from those in the
rest of the USAwell before treatment occurs, and this divergence occurs in a way which violates
the parallel trend assumption. However, in figure (b), we see that when a “synthetic control” is
formed, this synthetic control group tracks the true outcomes in the treated area very well in the
prereform period, however only diverges postreform. It is this postreform divergence that
we interpret as our treatment effect.

Figure 2.5: Synthetic Controls and Raw Trends (Figures 12 from Abadie et al. (2010))
Abadie, Diamond, and Hainmueller: Synthetic Control Methods for Comparative Case Studies 499

programs in the 1989–2000 period and they are excluded from
the donor pool. We also discard all states that raised their state
cigarette taxes by 50 cents or more over the 1989 to 2000 pe-
riod (Alaska, Hawaii, Maryland, Michigan, New Jersey, New
York, Washington). Notice that, even if smaller tax increases
substantially reduced smoking in any of the control states that
gets assigned a positive weight in the synthetic control, this
should if anything attenuate the treatment effect estimate that
we obtain for California. Finally, we also exclude the District
of Columbia from our sample. Our donor pool includes the
remaining 38 states. Our results are robust, however, to the in-
clusion of the discarded states.

Our outcome variable of interest is annual per capita ciga-
rette consumption at the state level, measured in our dataset as
per capita cigarette sales in packs. We obtained these data from
Orzechowski and Walker (2005) where they are constructed us-
ing information on state-level tax revenues on cigarettes sales.
This is the most widely used indicator in the tobacco research
literature, available for a much longer time period than survey-
based measures of smoking prevalence. A disadvantage of tax-
revenue-based data relative to survey data on smoking preva-
lence is that the former are affected by cigarette smuggling
across tax jurisdictions. We discuss this issue later in this sec-
tion. We include in X1 and X0 the values of predictors of
smoking prevalence for California and the 38 potential con-
trols, respectively. Our predictors of smoking prevalence are:
average retail price of cigarettes, per capita state personal in-
come (logged), the percentage of the population age 15–24, and
per capita beer consumption. These variables are averaged over
the 1980–1988 period and augmented by adding three years of
lagged smoking consumption (1975, 1980, and 1988). Appen-
dix A provides data sources.

Using the techniques described in Section 2, we construct
a synthetic California that mirrors the values of the predictors
of cigarette consumption in California before the passage of
Proposition 99. We estimate the effect of Proposition 99 on per
capita cigarette consumption as the difference in cigarette con-
sumption levels between California and its synthetic versions
in the years after Proposition 99 was passed. We then perform a
series of placebo studies that confirm that our estimated effects
for California are unusually large relative to the distribution of
the estimate that we obtain when we apply the same analysis to
the states in the donor pool.

3.3 Results

Figure 1 plots the trends in per capita cigarette consumption
in California and the rest of the United States. As this figure
suggests, the rest of the United States may not provide a suit-
able comparison group for California to study the effects of
Proposition 99 on per capita smoking. Even before the passage
of Proposition 99 the time series of cigarette consumption in
California and in the rest of the United States differed notably.
Levels of cigarette consumption were similar in California and
the rest of the United States in the early 1970s. Trends began to
diverge in the late 1970s, when California’s cigarette consump-
tion peaked and began to decline while consumption in the rest
of the United States was still rising. Cigarette sales declined in
the 1980s, but with larger decreases in California than in the rest
of the United States. In 1988, the year Proposition 99 passed,
cigarette consumption was about 27% higher in the rest of the

Figure 1. Trends in per-capita cigarette sales: California vs. the rest
of the United States.

United States relative to California. Following the law’s pas-
sage, cigarette consumption in California continued to decline.
To evaluate the effect of Proposition 99 on cigarette smoking
in California, the central question is how cigarette consumption
would have evolved in California after 1988 in the absence of
Proposition 99. The synthetic control method provides a sys-
tematic way to estimate this counterfactual.

As explained above, we construct the synthetic California as
the convex combination of states in the donor pool that most
closely resembled California in terms of pre-Proposition 99 val-
ues of smoking prevalence predictors. The results are displayed
in Table 1, which compares the pretreatment characteristics of
the actual California with that of the synthetic California, as
well as with the population-weighted average of the 38 states
in the donor pool. We see that the average of states that did not
implement a large-scale tobacco-control program in 1989–2000
does not seem to provide a suitable control group for Califor-
nia. In particular, prior to the passage of Proposition 99 average
beer consumption and cigarette retail prices were lower in the
average of the 38 control states than in California. Moreover,
prior to the passage of Proposition 99 average cigarette sales
per capita were substantially higher on average in the 38 con-

Table 1. Cigarette sales predictor means

California
Average of

Variables Real Synthetic 38 control states

Ln(GDP per capita) 10.08 9.86 9.86
Percent aged 15–24 17.40 17.40 17.29
Retail price 89.42 89.41 87.27
Beer consumption per capita 24.28 24.20 23.75
Cigarette sales per capita 1988 90.10 91.62 114.20
Cigarette sales per capita 1980 120.20 120.43 136.58
Cigarette sales per capita 1975 127.10 126.99 132.81

NOTE: All variables except lagged cigarette sales are averaged for the 1980–1988 period
(beer consumption is averaged 1984–1988). GDP per capita is measured in 1997 dollars,
retail prices are measured in cents, beer consumption is measured in gallons, and cigarette
sales are measured in packs.

(a) No Synthetic Control

500 Journal of the American Statistical Association, June 2010

trol states than in California. In contrast, the synthetic Califor-
nia accurately reproduces the values that smoking prevalence
and smoking prevalence predictor variables had in California
prior to the passage of Proposition 99.

Table 1 highlights an important feature of synthetic control
estimators. Similar to matching estimators, the synthetic con-
trol method forces the researcher to demonstrate the affinity be-
tween the region exposed to the intervention of interest and its
synthetic counterpart, that is, the weighted average of regions
chosen from the donor pool. As a result, the synthetic control
method safeguards against estimation of “extreme counterfactu-
als,” that is, those counterfactuals that fall far outside the convex
hull of the data (King and Zheng 2006). As explained in Sec-
tion 2.3, we chose V among all positive definite and diagonal
matrices to minimize the mean squared prediction error of per
capita cigarette sales in California during the pre-Proposition 99
period. The resulting value of the diagonal element of V asso-
ciated to the log GDP per capita variable is very small, which
indicates that, given the other variables in Table 1, log GDP
per capita does not have substantial power predicting the per
capita cigarette consumption in California before the passage
of Proposition 99. This explains the discrepancy between Cali-
fornia and its synthetic version in terms of log GDP per capita.

Table 2 displays the weights of each control state in the syn-
thetic California. The weights reported in Table 2 indicate that
smoking trends in California prior to the passage of Proposi-
tion 99 is best reproduced by a combination of Colorado, Con-
necticut, Montana, Nevada, and Utah. All other states in the
donor pool are assigned zero W-weights.

Figure 2 displays per capita cigarette sales for California and
its synthetic counterpart during the period 1970–2000. Notice

Table 2. State weights in the synthetic California

State Weight State Weight

Alabama 0 Montana 0.199
Alaska – Nebraska 0
Arizona – Nevada 0.234
Arkansas 0 New Hampshire 0
Colorado 0.164 New Jersey –
Connecticut 0.069 New Mexico 0
Delaware 0 New York –
District of Columbia – North Carolina 0
Florida – North Dakota 0
Georgia 0 Ohio 0
Hawaii – Oklahoma 0
Idaho 0 Oregon –
Illinois 0 Pennsylvania 0
Indiana 0 Rhode Island 0
Iowa 0 South Carolina 0
Kansas 0 South Dakota 0
Kentucky 0 Tennessee 0
Louisiana 0 Texas 0
Maine 0 Utah 0.334
Maryland – Vermont 0
Massachusetts – Virginia 0
Michigan – Washington –
Minnesota 0 West Virginia 0
Mississippi 0 Wisconsin 0
Missouri 0 Wyoming 0

Figure 2. Trends in per-capita cigarette sales: California vs. syn-
thetic California.

that, in contrast to per capita sales in other U.S. states (shown
in Figure 1), per capita sales in the synthetic California very
closely track the trajectory of this variable in California for the
entire pre-Proposition 99 period. Combined with the high de-
gree of balance on all smoking predictors (Table 1), this sug-
gests that the synthetic California provides a sensible approxi-
mation to the number of cigarette packs per capita that would
have been sold in California in 1989–2000 in the absence of
Proposition 99.

Our estimate of the effect of Proposition 99 on cigarette con-
sumption in California is the difference between per capita ciga-
rette sales in California and in its synthetic version after the pas-
sage of Proposition 99. Immediately after the law’s passage, the
two lines begin to diverge noticeably. While cigarette consump-
tion in the synthetic California continued on its moderate down-
ward trend, the real California experienced a sharp decline. The
discrepancy between the two lines suggests a large negative ef-
fect of Proposition 99 on per capita cigarette sales. Figure 3
plots the yearly estimates of the impacts of Proposition 99, that
is, the yearly gaps in per capita cigarette consumption between
California and its synthetic counterpart. Figure 3 suggests that
Proposition 99 had a large effect on per capita cigarette sales,
and that this effect increased in time. The magnitude of the es-
timated impact of Proposition 99 in Figure 3 is substantial. Our
results suggest that for the entire 1989–2000 period cigarette
consumption was reduced by an average of almost 20 packs per
capita, a decline of approximately 25%.

In order to assess the robustness of our results, we included
additional predictors of smoking prevalence among the vari-
ables used to construct the synthetic control. Our results stayed
virtually unaffected regardless of which and how many predic-
tor variables we included. The list of predictors used for robust-
ness checks included state-level measures of unemployment,
income inequality, poverty, welfare transfers, crime rates, drug
related arrest rates, cigarette taxes, population density, and nu-
merous variables to capture the demographic, racial, and social
structure of states.

(b) Synthetic Control

The process of forming a synthetic control consists of assigning weights to potential control
areas in such a manner to optimise prereform levels in the outcome variable. Following Abadie
et al. (2010) we consider J+1 regions, one of which receives treatment, whichwe arbitrarily call
region 1. The goal in synthetic control methods is to form a J×1 vectorW = (w2, . . . , wJ+1)

′

for which wj ≥ 0 ∀j, and w2 + . . . + wJ+1 = 1. These weights are chosen so that they
only use information prior to the reform of interest, and they ensure that all prereform average
outcomes and controls are equalised between the treatment unit and the synthetic control unit.
For example, in Abadie et al. (2010)’s example above, 5 of the potentially 49 donor states are
given positive weights, while the remaining 44 states are given no weight, resulting in a near
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perfect fit in trends prior to the reform (figure 2.5b).

Assuming that these weights can be formed, this then suggests a reasonably simple way to
calculate a treatment effect. We simply subtract from the postreform outcome in the treatment
state the weighted average of the postreform controls in the synthetic control states:

α̂1t = Y1t −
J+1∑
j=2

w∗
jYjt.

Note that in the above t refers only to postreform periods. The existence of weights for es
timation in particular requires that all pretreatment outcomes and controls of interest in the
treatment state are contained in a “convex hull” of the outcomes of the donor states, or that the
values of the treatment state aren’t universally higher or lower than those in all the donor states.
We return to discuss what to do in the case this does not hold at the end of this section.

This idea captures the spirit of diffindiff methods, however rather than having to subtract
the prereform difference from the post reform difference, the synthetic control ensures that the
prereform difference is equal to zero. In order to actually implement this method, the question
remains of how to calculate these weights. As Abadie et al. (2010) show, this can be treated
as a problem of minimising the Euclidean norm (or roughly, the total average distance in many
dimensions), as described below, where V is a semidefinite positive matrix:

∥X1 −X0W ∥V =
√
(X1 −X0W )′V (X1 −X0W ).

The full details of the weighting process, and indeed the estimator, are available in Abadie et al.
(2010). What’s more, the authors have made libraries available to implement this process in R,
MATLAB and Stata, all available online.

Up until recently, where the treatment state had outcomes which were universally higher or
universally lower than the donor states synthetic control methods could not be used. However,
work from Doudchenko and Imbens (2016) extended synthetic control methods and loosened
the estimation requirements. Principally, this allows for a constant different in levels between
the treatment area and the synthetic controls. Doudchenko and Imbens (2016) document their
updated methods using the same case as Abadie et al. (2010), and also a number of other applied
examples.

http://web.stanford.edu/~jhain/synthpage.html
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Empirical Exercise 2: Suffrage and Child Survival

Instructions: In this exercise will examine the paper “Women’s Suffrage, Political Re
sponsiveness, and Child Survival in American History”, by Miller (2008). We will first
replicate the (flexible) differenceindifferences results examining the effect of women
gaining the vote on child health outcomes using the dataset Suffrage.dta compiled
from Grant Miller’s website. We will then examine the importance of correct inference
in a differenceindifference framework, by examining various alternative standard error
estimates both capturing and notcapturing the dependence of errors over time by state.

Questions:
(A) Replication of Principal Results

1. Replicate the results in table IV of the paper, following equation 1, as well as the
notes to the table. [Note that in a small number of specifications you may find slightly
different standard errors using this version of the data.]

2. Plot figure IV (and see below) from the paper using the same dataset for male and
female mortality in each of the age groups displayed. Refer to the discussion on page
13061307 of Miller (2008) for details on calculations. This figure is based on average
regression residuals for each year, and as you will likely remember, these regression
residuals are calculated as ε̂ = y −Xβ̂. These can be calculated in Stata following a
regression by using the command predict varname, resid.

Replication of Figure IV of Miller (2008)
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(B) Examination of Some Details Related to Inference For parts 13 of the below question,
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it is only necessary to report the pvalues associated with each estimate (considering the null
hypothesis that the coefficient on suffrage is equal to 0. In part 4, we are interested in the
95% confidence intervals of the estimate.

1. Replicate the results from table IV, however without using standard errors clustered by
state.

2. Replicate the results from table IV using standard errors robust to heteroscedasticity

3. Reestimate the results from table IV using wild bootstrap standard errors. This could
be done using the userwritten ado boottestwhich can be installed in Stata using ssc
install boottest. If doing so, I suggest using the “noci” option of boottest.

4. Create a graph showing two sets of 95% confidence intervals for each estimate dis
played in table IV: the first using clustered standard errors and the second using the
uncorrected standard errors from point 1 above. Ensure to indicate where zero lies on
the graph to determine which estimates are statistically distinguished from 0 at 95% in
each case.

https://ideas.repec.org/c/boc/bocode/s458121.html
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Chapter 3

Estimation with Local Manipulations:
LATE and Regression Discontinuity

Required Readings
Imbens and Wooldridge (2009): Sections 6.3 and 6.4
Angrist and Pischke (2009): Chapter 4.1, 4.4, 4.5 (LATE) and Chapter 6 (RD)
Lee and Lemieux (2010): RD

Suggested Readings
Imbens and Angrist (1994)
Angrist et al. (2010)
Bharadwaj et al. (2013)
ClotsFigueras (2012)
Brollo and Troiano (2016)
Angrist and Lavy (1999)

In this section we will begin by returning to the relationship between what we have called
unconfoundedness and the zeroconditional mean assumption that we used to define the exo
geneity of our regressors in earlier econometrics courses when working with OLS. To do so,
let’s start with the Rubin causal model. Our workhorse example consists of potential outcomes,

y0i = µ0 + βxi + e0i (3.1)

y1i = µ1 + βxi + e1i (3.2)

and an assignment mechanism forWi, which may depend on the values of X and e.

Given a set of observed variables (yi, xi, wi), we can translate this into an estimable equation

61
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via the identity of the switching regression. But the ‘right’ way to write down this regression
depends on what it is we are trying to estimate. Suppose first that we are interested in estimating
the ATE. This is given by µ1 − µ0, the average difference between potential outcomes in the
entire population. Writing

yi = µ0 + (µ1 − µ0)︸ ︷︷ ︸
τ̂ATE

wi + βxi + (e1i − e0i)wi + e0i︸ ︷︷ ︸
eATE
i

, (3.3)

we can clearly see the requirement of exogeneity. We require wi to be uncorrelated with the
compound error term eATE

i . This requires unconfoundedness as we have defined it: wi must be
uncorrelated with both potential outcomes, y1i, y0i.1

Notice that if we were willing to assume that everyone had the same treatment effect, then
e1i − e0i = 0, for all i, so in a constant effects model we can estimate the ATE even if we only
have independence of wi from e0i. But if we are not willing to assume a constant effects model,
then in general the ATT and the ATE will not coincide. If instead we are interested in estimating
the ATT, then the expected value of E[e1i − e0i|Wi = 1] is part of what we want to study. If
the treated benefit more (or less) than the average member of the population, than this should
be reflected in our estimate of the ATT. In this case let us write

yi = µ0 + (µ1 − µ0) + (e1i − e0i)︸ ︷︷ ︸
τ̂ATT

wi + βxi + e0i︸︷︷︸
eATT
i

. (3.7)

From this we can see that the exogeneity assumption required for regression to provide an un
biased estimate of the ATT is weaker than for the ATE. We require only that wi is uncorrelated
with e0i, but not with e1i. All of this leads us to the fact that unconfoundedness gives the zero
conditional mean assumption that has traditionally been used to define exogeneity.

This is all well and good, but in the absence of a randomized, controlled trial, arguing for the
assumption of unconfoundedness is often an uphill battle. We are therefore interested in what

1A brief description of why unconfoundedness satisfies this requirement is as follows. Unconfoundedness
gives us (by definition) that E[e1i|wi] = 0 and that E[e0i|wi] = 0. Our challenge is to show that this implies the
zero conditional mean assumption, namely, that E[eATE

i |wi] = 0, where eATE
i is defined as in equation (3.3) as

eATE
i = (e1i − e0i)wi + e0i = e1iwi − e0iwi + e0i. (3.4)

The expected value of the third term is zero by assumption, leaving us with the first two terms. We will show that
E[e1iwi|wi] = 0; the other follows by symmetry.
Take the case where wi = 1. Then:

E[e1iwi|wi = 1] = E[e1i1|wi = 1] = E[e1i] = 0, (3.5)

where the second equality follows from the unconfoundedness assumption. Alternatively when wi = 0,

E[e1iwi|wi = 0] = E[e1i0|wi = 0] = 0, (3.6)

which completes the proof.
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wayswe can estimate the causal effects of a program underweaker assumptions. Inwhat follows
we will consider two cases where we can estimate a causal treatment effect locally (that is to
say for some specific group), but not globally. We will first consider the case of instrumental
variables and treatment effects, and then move on to regression discontinuity methods.

3.1 Instruments and the LATE

To understand the use of instrumental variables to estimate treatment effects, we return to
our simplest case of potential outcomes without covariates:

y0i = µ0 + e0i (3.8)

y1i = µ1 + e1i.

We will begin by assuming homogenous treatment effects. Let e0i = e1i = ei for all individuals
i. The resulting empirical specification is now

yi = µ0 + (µ1 − µ0)︸ ︷︷ ︸
τ

wi + ei. (3.9)

If unconfoundedness holds, we can use OLS to estimate the parameter τ , which gives the ATE
(equivalent to the ATT in this case). But what if unconfoundedness fails? Then the correlation
between ei, wi means we have a (now familiar) endogeneity problem.

3.1.1 Homogeneous treatment effects with partial compliance: IV

In the case of homogeneous treatment effects, you are likely already familiar with one way
of addressing this problem: instrumental variables. Suppose we have an instrument, z, that
affects the likelihood of an individual receiving the treatment, w, but has no direct effect on the
outcome of interest. Such an instrument will satisfy the exclusion restriction and rank condition
required for standard instrumental variables estimation (Wooldridge, 2002, chapter 6).

The paradigmatic example of this is a randomized, controlled trial with imperfect compli
ance. Individuals may be assigned at random to treatment and control arms of the trial, but it is
possible that some of those assigned to treatment may not undertaken the treatment, and some
of those assigned to control arms may end up getting the treatment. In this case, so long as
the initial assignment was truly random and has some power over which treatment people end
up receiving, it can be used as an instrument. There are several ways to implement such an
instrumental variables approach, which we examine below in turn.
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(i) Twostage least squares Twostage least squares combines our causal model for the out
come,

yi = µ0 + τwi + ei (3.10)

with a firststage regression that is a linear projection of the treatment on the instrument:

wi = γ0 + γzzi + vi. (3.11)

Substituting the predicted values of wi, ŵi, from the firststage regression into the second stage
regression gives

yi = µ0 + τ 2SLSŵi + ui. (3.12)

where τ 2SLS consistently estimates the ATE. As usual, doing this in two stages by hand does not
correct standard errors for the use of a constructed regressor, but these can be obtained directly
by use of Stata’s ivregress or related commands.

(ii) Indirect least squares It is also useful to understand that the 2SLS estimate can be repro
duced from a pair of ‘reducedform’ regressions. In particular, consider estimation of equation
(3.11) together with the reduced form

yi = π0 + πzzi + ηi. (3.13)

Now, recall the properties of the 2SLS estimator that τ is equal to the ratio of the covariances

τ IV =
cov(y, z)
cov(w, z)

(3.14)

=
cov(y, z)/v(z)
cov(w, z)/v(z)

. (3.15)

The second line follows just from dividing both numerator and denominator by the same quan
tity, the variance of z. This is helpful because the numerator and denominator are exactly what
is estimated by the regression coefficients on zi in the reducedform and firststage equations,
respectively. That is, πz = cov(y, z)/v(z), and γz = cov(w, z)/v(z). So, an indirect squares
approach to estimating τ is to estimate the two reducedform coefficients, and then take their
ratio.

(iii) Wald estimator In the special case where our instrument is binary, equation (3.15) has a
particularly useful interpretation. Notice that if z is binary, then the coefficient on this variable
in the reducedform regressions will give us the simple difference in means:

πz = E[y|z = 1]− E[y|z = 0]

γz = E[w|z = 1]− E[w|z = 0].

http://www.stata.com/manuals13/rivregress.pdf
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Substituting these values into the ratio for indirect least squares (equation 3.15) gives theWald
estimator

τWALD =
E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Wi|Zi = 1]− E[Wi|Zi = 0]
(3.16)

where τ estimates the ATE (=ATT, since we are still maintaining the assumption of homo
geneous treatment effects). This is an application of a standard interpretation of instrumental
variables to the case of a binary instrument; see Angrist and Pischke (2009) and Imbens and
Wooldridge (2009) for discussion.

Once we relax the (strong!) assumption of homogeneous treatment effects, however, we
can no longer interpret IV estimates as estimating ‘the’ treatment effect. In fact, IV will not
necessarily give us either the ATE or the ATT!

3.1.2 Instrumental variables estimates under heterogeneous treatment ef
fects

When treatment effectsmay be heterogeneous—and there is often little reason to rule this out
a priori—and compliance with randomization into treatment is imperfect, the situation becomes
considerably more complicated. It is now only under special conditions that we can estimate
even the ATT (let alone the ATE).

In this context, in order to be able to interpret IV estimates as giving average treatment
effect for some subpopulation, we will need stronger assumptions than are typically made in a
homogeneouseffects IV world. This requires us to expand our potential outcomes notation, to
be explicit about the effect of the instrument on treatment status and outcomes.

The possibility of noncompliance leads to an alternative measure of the treatment effect.
Suppose we want to know what is the total benefit of our randomly assigned instrument. In
many cases this may be the actual intervention: e.g., Z could be a conditional cash transfer
program, andW could be schooling, Y a socioeconomic outcome of interest.

Since our costs are associated with implementing Z, we may want to know the average
benefit of those who receive Z = 1. This is the ITT:

Definition 1. IntenttoTreat effect

The ITT is the expected value of the difference in outcome, Y , between the population ran
domly assigned to treatment status W = 1 (but who may not have ended up with that status)
and those who were not:

ITT = E[Yi|Zi = 1]− E[Yi|Zi = 0]. (3.17)
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A useful result, due to Bloom (1984), relates the ITT to the ATT under the additional assumption
that there is no defiance, that is, that Pr[Wi = 1|Zi = 0] = 0:

ITT = ATT × c, (3.18)

where c is the compliance rate, c = Pr[Wi = 1|Zi = 1]. This follows intuitively from the
independence of Zi and potential outcomes (so that it is uncorrelated with Y0).

3.1.3 IV for noncompliance and heterogeneous effects: the LATE Theo
rem

Under imperfect compliance, we have two potential outcomes in terms ofW , for any given
value of the instrument Z. For the two possible values of Zi ∈ {0, 1}, we define (W0i,W1i) as
the corresponding potential outcomes in terms of realised treatment status. We can then write

Wi = W0i(1− Zi) +W1i(Zi). (3.19)

Notice also that the outcome variable may conceivably depend on on both treatment status
and the value of the instrument. Let us denote by Yi(W,Z) the potential outcome for individual i
with treatment statusW and value of the instrumentZ. So there are now four potential outcomes
for each individual, associated with all possible combinations ofW and Z.

The instrument, Zi, will be valid if it satisfies the unconfoundedness (conditional mean
independence) assumption with respect to the potential outcomes in Y and W . Formally, we
will assume:

Assumption 4. Independence

(Yi(1, 1), Yi(1, 0), Yi(0, 1), Yi(0, 0),W1i,W0i) ⊥⊥ Zi. (3.20)

Independence alone does not guarantee that the causal channel throughwhich the instrument
affects outcomes is restricted to the treatment under study. For this reason, we add the standard
exclusion restriction:

Assumption 5. Exclusion restriction

Yi(w, 0) = Yi(w, 1) ≡ Ywi (3.21)

for w = 0, 1.

An individual’s treatment status fully determines the value of their outcome, in the sense
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that the instrument has no direct effects.

A standard requirement for instrumental variables, including this case, is one of power.
When IV was introduced, we required the instrument to be partially correlated with the en
dogenous variable, conditional on the exogenous, included regressors (Wooldridge, 2002, ch.
5).

Assumption 6. First stage
E[W1i −W0i] ̸= 0. (3.22)

Notice that this is a statement about the expected value for the population as a whole. It
does not guarantee that any individual is ‘moved’ by the instrument to change their treatment
status. It does not even guarantee that all individuals are ‘moved’ in the same direction: some
may be induced by the instrument to take up treatment, whereas they otherwise would not have
done so, while others may be induced by the instrument not to take up treatment, whereas they
otherwise would have done so.

For this reason, interpretation of an IV regression as the treatment effect for some subpopu
lation requires something stronger than firststage power alone. In particular, we require that all
individuals in the population are uniformly more (or less) likely to be treated when they have
Zi = 1.

Assumption 7. Monotonicity

W1i ≥ W0i,∀i.

Notice that if the instrument takes the form of a discouragement from taking up the treat
ment, we can always define a new variable Z ′

i = (1 − Zi), which will satisfy monotonicity as
defined above.

Under these four conditions, instrumental variables estimation will give us a local average
treatment effect—an average treatment effect for a specific subpopulation. The LATE Theorem
(Angrist and Pischke, 2009, p. 155) gives us…

Theorem 2. The LATE Theorem

Let yi = µ0 + τiwi + ei, and let wi = γ0 + γzizi + ηi. Let assumptions 1  4 hold. Then

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Wi|Zi = 1]− E[Wi|Zi = 0]
= E[Y1i − Y0i|W1i > W0i]

= E[τi|γzi > 0]

See Angrist and Pischke for the proof, which is not reproduced here.
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3.1.4 LATE and the compliant subpopulation

The LATE theorem tells us that the Wald/IV estimator provides an unbiased estimate of
treatment effects for some subpopulation—the subpopulation for whom W1i ̸= W0i. Who are
these people?

The answer, unfortunately, depends on the instrument that we are using, and its ability to
affect the eventual treatment status of individuals in the sample. Relative to a given instrument,
we can categorize individuals in four groups. These are listed in table 3.1). Notice here, that
the assumption of monotonicity rules out the existence of defiers.

Table 3.1: Compliance types

Group Definition Words

Compliers: W1i = 1,W0i = 0 Participate when assigned to participate, don’t partic
ipate when not assigned to participate

Nevertakers: W1i = 0,W0i = 0 Never participate, whether assigned to or not
Alwaystakers: W1i = 1,W0i = 1 Always participate, whether assigned to or not
Defiers: W1i = 0,W0i = 1 Participate when assigned not to participate, don’t par

ticipate when assigned to participate

Our estimates of the treatment effect will be entirely driven by the compliers. With IV
we estimate a Local Average Treatment Effect: the average treatment effect on the compliant
subpopulation. This implies that IV is not informative for always takers and for never takers,
as the intrument has no power to shift the treatment status for these groups. As an aside, this is
somewhat analagous to fixed effects models in panels, where estimates are driven only by units
who ‘change’ within the panel.

For this reason we may want to be able to say something about who exactly these compliers
are. Under monotonicity, the size of the compliant subpopulation is given by the first stage of
our IV estimation (Angrist and Pischke, 2009, p. 167):

Pr[W1i > W0i] = E[W1i −Wi0]

= E[W1i]− E[W0i]

= E[Wi|Zi = 1]− E[Wi|Zi = 0] (3.23)

where the last line makes use of the independence assumption. We can use this to determine
the fraction of the treated who are compliers (Angrist and Pischke, 2009, p. 168). If a high pro
portion of the treated are compliers, we can feel relatively confident about the representativeness
of the estimated treatment effect.
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Different instruments will have different populations of compliers, and so different LATEs.
This insight has important lessons for tests used elsewhere for the validity of instruments. If
treatment effects are heterogeneous, and we estimate very different effects using two different
instruments, we may not be able to tell whether this is due to heterogeneity in treatment effects
or due to the invalidity of one of the instruments.

Can we say anything about the characterisitcs of compliers? While the above suggests
that it is simple to know what proportion of observations are compliers, we likely would like
to be able to say more about this group to better interpret the LATE. Of course, we cannot
simply “look at” the compliers and summarise their observations, given that one’s status as a
complier is unobservable. However, we can still say something about the relative frequency of
characteristics among compliers, allowing us to respond to questions such as: “are the compliers
more likely to have a secondary education than the general population?” or any such question
relating to observed characteristics. To see this, note that (from Angrist and Pischke (2009, p.
171)) for a binary variable x1i:

Pr[x1i = 1|W1i > W0i]

Pr[xii = 1]
=

Pr[W1i > W0i|x1i = 1]

Pr[W1i > W0i]
=

E[Wi|Zi = 1, x1i = 1]− E[Wi|Zi = 0, x1i = 1]

E[Wi|Zi = 1]− E[Wi|Zi = 0]
.

That is to say, if we would like to know how much more/less likely the population of compliers
is with characteristic xi1 = 1 versus the whole population (the lefthand term), we simply need
to compare the first stage for this group, with the first stage for the whole population. We can
follow a procedure of this type to examine the distribution of any variables of interest.

Treatments with Multiple Levels So far, we have been considering the case where Wi, the
endogenous (treatment) variable of interest is a binary variable. In this case when we estimate
a LATE, although the parameter is “local” to some specific group, it is clear that this parameter
refers to the impact of a shift from 0 to 1 in the binary variable Wi. However, how does the
interpretation of the LATE change when we consider a multilevel treatment variable? For
example, what if the treatment variable of interest is years of schooling, or total fertility in
a family? The response to this question turns out to require thinking not just about who the
instrument causes to shift behaviour, but also thinking about at what margin of the dependent
variable the instrument induces shifts.

For example, consider a case where we wish to examine the impact of fertility on child edu
cational outcomes. Here a frequently used instrument is the twin birth instrument. In particular,
let’s consider a twin birth at birth order 3. This could cause families to move from having had 3
children without the twin, to four children with the twin, but similarly, could also cause higher
margin shifts in fertility, eg a family that would have had 4 births now has 5 births. In the case
of a multileveled treatment variable, as the instrument can cause shifts at multiple margins of
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the treatment variable we can no longer talk of a single class of complier. Here, Angrist and
Imbens (1995) show that the interpretation of the parameter is now in terms of the “Average
Causal Response” function, or in terms of the entire shift of the distribution of the endogenous
variable of interest caused by receipt of the instrument. To do this, they define the Average
Causal Response (ACR) function as follows:

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Si|Zi = 1]− E[Si|Zi = 0]
=

S∑
s=1

ωsE[Ysi − Ys−1,i|s1i ≥ s > s0i]

where ωs =
P [s1i ≥ s > s0i]∑S
j=1 P [s1i ≥ j > s0i]

Here, we use Si to refer to the multileveled treatment variable of interest. Note that the quantity
on the lefthand side of the first line is the Wald estimate that would come out of our IV model.
Thus, the ACR theorem states that we can interpret the IV (Wald) estimate with a multilevelled
treatment as a weighted average of the effect of compliers who are shifted by the instrument
to move from s − 1 to s at each point of the distribution of S, where the weights are given by
the probability that the instrument shifts the distribution of S at this point. In this case, this
is another reason why LATEs from different (valid) instruments may not be the same if the
instrument traces out different shifts in this ACR function.

These weights can perhaps be iilustrated most simply with an example. Consider the case
mentioned briefly above, where we wish to estimate the impact of family fertility (a multi
valued treatment) on children’s educational outcomes. In the below panels, we show plots of
the ACR function of shifts in fertility induced by a twin birth. The top two panels are based
on different samples in census data in Israel (from Angrist et al. (2010)), and the bottom two
panels are based on a developing country sample and a sample from the USA from Bhalotra and
Clarke (2019a). While in all cases a twin at birth order three causes the biggest shift in fertility
when considering families exceeding 4 children, it also has higher order impacts, up to as much
as 9+ births in a developing country sample.2 Note that here, even using the same instrument,
the LATE will be interpreted quite differently depending on the context examined.

What Changes if we addControls? In general when discussing the LATE, theWald estimate
is considered as a starting point, however in practice the assumptions leading to consistency in
IV estimates may only hold conditional on covariates. For example, the frequently used twin
instrument is thought to require (at least) controls for maternal age, given that the likelihood
of a twin birth increases as women become older due to hormonal changes (see for example
discussion in Bhalotra and Clarke (2019b)). In practice, this implies that we are replacing the
independence assumption (3.20) with a conditional indendence version:

2These shifts can be rationalized if one thinks about issues such as access to contraceptive measures and labour
market opportunites, among other things.
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Figure 3.1: Average Causal Response Functions for Twin Birth

(a) Israel Africa/Asia (b) Israel/Europe

(c) Developing Countries (d) USA

Assumption 8. Conditional Independence

(Yi(1, 1), Yi(1, 0), Yi(0, 1), Yi(0, 0),W1i,W0i) ⊥⊥ Zi|Xi. (3.24)

To see what we estimate if we run 2SLS with controls, Angrist and Pischke (2009) introduce
the following notation:

λ(Xi) ≡ E[Y1i − Y0i|Xi, D1i > D0i],

where λ(Xi) refers to the treatment effect for each possible value ofXi. For example, consider a
simple case where the only covariate is maternal age. In this case, we would have a single λ(Xi)

value for each maternal age observed in the population. This is what Angrist and Pischke (2009)
refer to as a saturated model—a model where all possible levels of the covariates are included
as a series of dummy variables. In this case, they show that the treatment effect estimated with
a full set of saturated covariates is:

τ = E[ω(Xi)λ(Xi)], where ω(Xi) =
V (E[Wi|Xi, Zi]|Xi)

E[V (E[Wi|Xi, Zi]|Xi)]
,

whereV (E[Wi|Xi, Zi]|Xi) = E{E[Wi|Xi, Zi](E[Wi|Xi, Zi]−E[Wi|Xi])|Xi}. Thus, inwords,
the 2SLS estimand is a weighted average of each covariatespecific LATE, where the weights
are given by ω(Xi). These weights place more emphasis on groups for which the instrument
creates more valuation in the fitted values of the first stage: ie groups where the instrument
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produces more variation in treatment conditional on covariates. Angrist and Pischke refer to
this as the “Saturate andWeight” theorem, though it is important to note that there may be times
when we wish to work with more parsimonious models, for example models where continuous
variables enter linearly rather than as a series of fully saturated dummies. In this case, there is
a result based on work from Abadie (2003) which states that for compliers the treatment versus
control comparison conditional on Xi is equal to LATE conditional on Xi. However, in prac
tice, the challenge is that we do not know who the compliers are, so we cannot estimate these
LATEs directly. Abadie (2003) introduced what is now known as “Abadie’s Kappa”, which
allows us to “find” compliers, and hence estimate this LATE directly in the complier group.
This κ term is useful for a number of reasons, however goes somewhat beyond the scope of
these lectures. To read more, refer to Angrist and Pischke (2009, pp. 178–180) and references
therein. An important takeaway from this is that to the degree that the probability that Zi is
“switchedon” is approximately linear in Xi, the 2SLS estimand will approximately estimate
the conditional LATE for compliers.

3.1.5 Some Closing Points on the LATE

The Local Average Treatment Effect is what is delivered from a binary instrumental variable
with heterogeneity, however it is likely not the quantity that we are most intersted in estimating
for policy reasons. While the precise nature of the compliers will depend on each IV, policy
relevant quantities are likely based on entirely different criteria, such as the impact on the entire
population, or the impact on some particular targeted group. There is a robust discussion of
the utility of the LATE, focusing on (among other things) the relative importance of the (good)
internal validity of the estimates under the maintained assumptions, versus the parameter’s use
in an external population. Much has been written here. A useful (more positive) take of the
LATE is provided by Imbens (2010) in a paper entitled “Better LATE than Nothing…”. A
more critical view is provided by Deaton (2009), a small portion of which is provided below.

“The LATE may, or may not, be a parameter of interest to the World Bank or the
Chinese government and in general, there is no reason to suppose that it will be.
For example, the parameter estimated will typically not be the average poverty
reduction effect over the designated cities, nor the average effect over all cities.

I find it hard to make any sense of the LATE. We are unlikely to learn much about
the processes at work if we refuse to say anything about what determines θ; het
erogeneity is not a technical problem calling for an econometric solution, but is a
reflection of the fact that we have not started on our proper business, which is try
ing to understand what is going on. Of course, if we are as skeptical of the ability
of economic theory to deliver useful models as are many applied economists today,
the ability to avoid modeling can be seen as an advantage, though it should not



3.2. REGRESSION DISCONTINUITY DESIGNS 73

be a surprise when such an approach provides answers that are hard to interpret.”
Deaton (2009, pp. 9–10).

Later in these notes we will return to other quantities estimated based on similar types of
models when returning to discuss heterogeneity in more detail. Regardless of your own opinion
of the use of LATE, it is important to understand exactly what is being estimated in thesemodels,
given their frequency of appearance in papers in economics.

3.2 Regression Discontinuity Designs

3.2.1 An Introduction to RDDs

We may not always be willing to assume that the relevant unobservables driving both po
tential outcomes and treatment assignment are timeinvariant as was the case in differncein
differences style models we have studied previously. An alternative is to assume that uncon
foundedness holds locally, i.e., only in a small neighborhood defined by an observable correlate
of selection.

For example, if we were interested in examining the effect of different types of politicians
on the outcomes in their constituencies, we would be very hardpressed to make the claim that
politicians are randomly assigned to localities, given that they are explicitly chosen (elected)
by constituents! However, in a reasonably tight margin, we may be willing to assume that the
difference between a politician gaining slightly more than a majority of the vote or gaining
slightly less than the majority is largely random. In the limit, the difference between 50%
and +1 vote and 50% 1 vote is extremely small, and plausibly unrelated to potential outcomes.
However, the final result of both elections is radically different. In the first case, the assignment
mechanism implies that the consituency recieves treatment (the politician in question), while
in the second case the constituency does not receive tretment. Such local unconfoundedness
type assumptions are at the heart of the regression discontinuity approach. It turns out that
such arbitrary discontinuities are not infrequent in practice, as often formal decision rules are
needed where various individuals seek access to limited spots. For example, discontinuities
are encountered in educational admissions based on test scores, diagnostic decisions to define
medical care, access to means tested public programs, and a whole host of other circumstances.

Notice that when assignment of treatment status varies according to strict rules along a
single observable dimension, x, then we have a special problem for matching methods. On
the one hand, enforcement of the rule means that the assumption of common support will be
violated—we will inevitably rely on some kind of extrapolation. On the other hand, such a
rule itself provides us with the ability to be confident about the process of selection into the
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program (particularly when it is sharply enforced). There may be no problem of selection on
unobservables in this case; our primary concern is now allowing an appropriate functional form
for the direct effect of the selection criterion x on the outcome of interest.

Following Lee (2008), suppose that treatment is assigned to all individuals with x greater
than or equal to cutoff κ. The variable x (vote share in the above example) has a direct effect
on outcomes of interest, such as corruption. If we are willing to assume that this effect is linear,
then we can use regression methods to estimate:

yi = β0 + βxxi + τwi + ui (3.25)

where τ will give us the ATE. If the rule is perfectly enforced, then conditional on x there is
no correlation between wi and ui (i.e., conditional mean independence will hold), so τ is an
unbiased estimate. But in order to do this, we must be very sure that we have the functional
form right for the relationship between x and potential outcomes.

Figure 3.2: Strict Regression Discontinuity Design
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Consequently, we may want to be more cautious in extrapolating a linear relationship be
tween x and y. This is illustrated in Figure 3.2, where a simple plot of the data suggests that
extrapolating a linear functional form for the relationship between x and potential outcomes
may be inappropriate (in fact the true DGP in this simulated example is a cubic function).3 This
is illustrated in Figure 3.3. In panel (a), the “discontinuity” observed between the two linear

3Figure 3.2 presetns a regression discontinuity setting with a perfectly enforced eligibility rule (at x = 0).
Treated individuals are denoted by the small blue x, untreated by the red o. The DGP of y is y = 0.6x3+ 5w+ ε,
where ε ∼ N (0, 1). Linear regression of y on x and w gives βx = 2.08(0.22) and τ = 3.29(0.42).



3.2. REGRESSION DISCONTINUITY DESIGNS 75

predictions at point 0 is considerably smaller than the discontinuity observed when a quadratic
fit is considered in panel (b). Here, if a linear fit were considered, extrapolation leads us astray:
in this case, it leads us to dramatically underestimate the true treatment effect. Extrapolation is
required in particular here precisely because the clean enforcement of the eligibility rule cre
ates a situation of zero overlap. We never observe y0 for x > κ, for example. Drawing on a
similar logic to propensity score matching, we can relax functional form assumptions by com
paring outcomes only among individuals who are in a neighborhood of x suitably close to the
boundary.

Figure 3.3: Regression Discontinuity and The Running Variable
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(a) Linear Fit
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(b) Quadratic Fit

Local unconfoundedness: We nowmake a less stringent assumption about (non)selection
on unobservables: the unconfoundedness needs only hold locally, in a neighborhood around κ.
As Lee and Lemieux (2010) argue, even when agents can exert control over the forcing variable
x, if that control is imperfect then the realization of whether x is above of below the cutoff κ,
for agents very close to κ, is likely to be driven largely by chance:

lim
x↓κ

E(εi|x > κ) = lim
x↑κ

E(εi|x < κ).

If local unconfoundedness holds, this then leads to our estimate of the effect of treatment:

τ = lim
x↓κ

E(Yi|x > κ)− lim
x↑κ

E(Yi|x < κ)

= lim
x↓κ

E(Y1i|x > κ)− lim
x↑κ

E(Y0i|x < κ) (3.26)

= E[Y1i − Y0i|x = κ]

In general, what we estimate in a regression discontinuity is the average treatment effect for
observations with x approximately equal to κ. When treatment effects are heterogeneous, this
will not be either the ATE or the ATT, but rather the ATE(κ). Of course, there is nothing that
will imply that this treatment effect will tell us anything about treatment effects at other points
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Figure 3.4: Regression Discontinuity and Heterogeneity over the Distribution of x
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of the running variable — see for example figure 3.4 where τ(κ) is relatively uninformative for
τ at certain other points of the support of the running variable.

The closer the neighborhood around κ we use for estimation, the less of an effect our as
sumptions about the functional form for x will have. But it is common to use a flexible or
nonparametric approach for the relationship between x and yi to avoid making assumptions
about functional form in any case. These are described in section 3.2.3 below.

3.2.2 Regression Discontinuity Designs

Sharp Design

The prototypical RD design is a “sharp design”, where the discontinuity implies a concrete
change in treatment status at the threshold κ. In this case, all individuals who are located below
the threshold value are assigned to the control group, and all individuals who are located above
the threshold value are assigned to the treatment group. This allows to write a very simple
model for treatment assignment, which is that:

wi = 1{xi ≥ τ}. (3.27)

A clear example of this could be an election between two candidates (say a leftwing versus a
rightwing mayor). If our treatment is that a county is assigned to a leftwing mayor, we know
that this will only be observed if in this county the leftwing mayor receives at least 50%+1 vote,
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while if the candidate receives 50%1 vote, the municipality will be assiged to the “treatment”
group. The important thing here is that there is absolutely no discretion: if a majority of votes is
received a candidate is chosen, whereas if a majority is not received, a candidate is not chosen.

Given the assignment mechansim described in equation 3.27, the impact of being assigned
to treatment can be isolated easily given that the variable of interest jumps from 0 to 1 pre
cisely when moving across point κ. In this case, we can estimate the effect of assignment to wi

following equation 3.26. When comparing average outcomes of y at points just below τ , with
average outcomes of y at points just above τ we gain an esimate of the impacts of treatment
shifting from 0 to 1, holding all else constant (save for the very small movement in the running
variable).

Fuzzy Design

In the “sharp” regression discontinuity design examined so far, the probability of receiving
treatment jumps deterministically from zero to one at the cutoff. Such is the case, for example,
with simple majority elections, where crossing the threshold of the vote majority automati
cally results in a candidate being elected. Perhaps even more common than pure regression
discontinuities are situations in which the probability of treatment jumps at the cutoff, but not
deterministically. In these cases, not everyone above the cutoff is treated, and not everyone
below the cutoff is untreated. Nevertheless, there is some local manipulation which ocurrs at
this point, and which can be used for identification of a treatment effect. Essentially, now rather
than the likelihood of treatment jumping by one at the cutoff, we observe:

lim
x↓κ

Pr(wi|x > κ) ̸= lim
x↑κ

Pr(wi|x < κ). (3.28)

Graphically, the difference in these designs can be obeserved in Figure 3.5. In the case of
sharp designs, plotted on the righthand side, there is no discretion in the application of the
assignment rule. To the right of the threshold, no individual receives treatment, and to the
left of the threshold, everybody receives treatment. However, in the case of the Fuzzy design,
treatment is discretional. While in Fuzzy designs, the threshold does have an impact and does
shift behaviour, this shift is not absolute, with certain individuals either opting into treatment
below the cutpoint or opting out of treatment above the cutpoint, in which case the observed
change does not jump sharply from 0 to 1, but rather in a “fuzzy” way from some value greater
than or equal to 0, to some value less than or equal to one.

For example, Ozier (2011) uses a cutoff (eligibility) rule in primary exam scores to estimate
the impact of secondary education in Kenya; not everyone who gets a score above the threshold
attends secondary school, but at least some do. In such cases, instrumental variable methods
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Figure 3.5: Fuzzy versus Sharp RDD Designs
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(b) Fuzzy Design

may be used: the discontinuity may be thought of as a valid instrument for treatment in the
neighborhood of the discontinuity. This is an interesting example of the LATE framework laid
out above: the cutoff (treatment) provides a case of imperfect compliance. Now, rather than
simply estimating the difference between those just above and just below the cutoff (as was
the case in a sharp RD and equation 3.26), the effect must be weighted by the probability that
those who cross the threshold are convinced to opt for treatment4:

τF =
limx↓κ E(Yi|x > κ)− limx↑κE(Yi|x < κ)

limx↓κ E(Wi|x > κ)− limx↑κE(Wi|x < κ)
. (3.29)

This is the well known Wald estimator. As in section 3.1.4, it allows us to estimate a treat
ment effect, but this treatment effect holds only for the subpopulation of compliers. In this case,
compliers are the units who would get the treatment if the cutoff were at κ or above, but they
would not get the treatment if the cutoff were lower than κ. In the Ozier (2011) example, they
are those students who would go on to secondary if they achieve a score above the cutoff in the
Kenyan Certificate of Primary Education, however would leave school if they do not achieve a
score over the minimum cutoff.

4It is worth noting then, that as the denominator (likelihood of treatment given that the threshold is crossed)
approaches 1, the fuzzy regression formula converges on the sharp RD formula displayed in 3.26. This is always
the case with LATE, where as the instrument becomes perfectly binding, the IV estimate approaches the reduced
form estimate.
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3.2.3 Estimation and Inference with RD

Global vs Local Methods

Practical concerns when it comes to estimating parameters in regression discontinuity stem
from the fact that we must adequately capture the relationship between the running variable and
the dependent variable itself. If we fail to properly capture this relationship, we may incorrectly
infer that this relationship is due to the discontinuity, κ rather than simply movements away
from the discontinuity x.

There are two broad ways to deal with the issue of the relationship between the running
variable and the outcome of interest. The first—parametric methods—consist of trying to ad
equately model the relationship between y and x over the entire range of data. The second—
nonparametric methods—consist of limiting analysis to a short interval optimally chosen to be
close to the cutoff (a distance known as the bandwidth), and then simply fitting a linear trend
on each side.

Parametric methods These methods approach regression discontinuity as a problem of fit
ting a correctlyspecified functional form tomodel the relationship between the running variable
and the outcome variable on each side of the cutoff. Thus, the name “parametric methods”, as
we wish to correctly parametrize the relationship between x and y to thus isolate the effect of
jumps in w at the threshold κ. These methods, also sometimes known as the global polynomial
approach, then infer that the effect of receiving the treatment is the difference between each
function as it approaches the discontinuity from each direction.

The global polynomial approach is straightforward to implement (Lee and Lemieux, 2010).
It amounts to a regression of the form (here a secondorder polynomial):

yi = µ0 + (µ1 − µ0)Ti + β+
1 Ti(xi − κ) + β−

1 (1− Ti)(xi − κ)

+β+
2 Ti(xi − κ)2 + β−

2 (1− Ti)(xi − κ)2

Notice that the polynomial is centered at the cutoff point and the polynomial can take a different
shape on either side of the cutoff. These address potential nonlinearity illustrated in Figure 3.2.
Here, the estimates {β+

1 , β
−
1 , β

+
2 , β

−
2 } are designed to (adequately?) capture the relationship

between x and y, while the treatment effect of interest is given by the remaining discontinuity
at treatment Ti, which in our model is captured by µ1 − µ0.

The parametric approach thus reduces to correctly specifying these global polynomials.
While the above specification suggests a cuadratic relationship, there is nothing (computation
ally at least) stopping us from using a cubic or even cuartic polynomial. The outstanding issue
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is then the choice of order of polynomial. One approach, described by Lee and Lemieux (2010),
include choosing the model that minimizes the Akaike information criterion (AIC):

AIC = Nln(σ̂2) + 2p

where σ̂2 is the Mean Squared Error, and p is the number of parameters. An alternative is to
include dummy variables for a number of bins, alongside the polynomial, and test for the joint
significance of bin dummies. The latter is also useful as a form of falsification test: we might
worry if there were discontinuities in the outcome variable at thresholds other than the cutoff
we are using for analysis.

However, more generally, we should ask ourselves why should we use all the data for in
ference if we are explicitly making a local identification argument? Surely, if we are using data
over a larger range of x values, we should be more concerned that the “local unconfoundedness”
assumption becomes more and more unbelievable, and the marginal benefit of adding data very
far from the discontinuity is highly questionable. These concerns are precisely why parametric
approaches are rarely appropriate, and generally should not be used. In practice, regression
discontinuity applications focus on local methods, where considerable attention is paid to the
concern of how to determine the optimal analysis window.

Nonparametric methods then take the more logical approach of focusing only on a small
sample of the data with a value of x that puts it very close to the cutoff point. By doing so, we
line up the theory which states that falling on either side of the cutoff is locally random, with
the practice of focusing on areas local to the cutoff.

Local Polynomial Methods

The idea behind local polynomial methods is that—in line with identifying assumptions—
we will focus our attention on areas “local” to the cutoff. We will then parametrically control
for x within this local area only, discarding observations which are too far from the cutoff to
merit consideration. We call the interval around the cutoff that is used for estimation the band
width, generally denoted h. The limiting argument above in (3.26) hints at a key feature of the
asymptotic argument that underlies the RD approach (Lee and Lemieux, 2010): the bandwidth
should be as small as the sample allows. There are two main reasons for why this is advanta
geous. First, the bigger the bandwidth that we use, the more important it is to correctly specify
the functional form for the relationship between the running variable, x, and potential outcomes.
As the bandwidth shrinks, there is less and less variation in x in the sample being used for es
timation, and so the scope for x to bias estimates of the treatment effect is reduced. Second, if
x is chosen by agents under study, but without perfect control, then agents with very similar x
values who end up on opposite sides of the cutoff are likely to have made similar choices. The
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reason that they end up on either side of the cutoff is largely chance. On the other hand, agents
very far from the cutoff may have made different choices about x. Those differences may be
too big to be likely to be explained by imperfect control of x. And if choice of x is determined
with (even partial) knowledge of potential outcomes, then larger bandwidths introduce a source
of bias.

As laid out in Cattaneo and Titiunik (2022), the local polynomial approach requires four
steps. These are:

1. Selecting the local polynomial order and kernal weighting function

2. Given these choices, determining a bandwidth h for estimation

3. Combine the choices from 1 and 2 with a standard least squares method for estimation

4. Conduct valid statistical inference

Selection of Polynomial Ordering Even when focusing on “local” windows around the cut
off point, it is necessary to control for relationships between x and y which may partially con
found the RD estimate at the cutpoint. In local polynomial methods, these controls consist
of separate polynomial controls of x on either side of the cutoff. For example, a first order
polynomial (p = 1) consists of capturing a separate linear relationship on either side of the
cutpoint, while a quadratic polynomial, p = 2, consists of including controls for x and x2,
with separate parmeters on either side of the cutoff. In practice, the standard recommenda
tion is to use local linear methods, setting p = 1 (Cattaneo and Titiunik, 2022). This picks
up recommendations to avoid higherorder polynomials, which have been made, for example
by Gelman and Imbens (2019) who caution against using polynomials greater than order 2 to
capture regression discontinuity effects, focusing on this practice in the global polynomial ap
proach described previously. The point from Gelman and Imbens (2019) is that estimates using
higher order polynomials may be misleading, and potentially harmful to estimated effects given
that they may give unreasonable weight to values which are far from the cutoff in fitting poly
nomials, and may be very jumpy close to the cutoff point with important implications for the
estimated parameters. Their preference is to focus on local linear regression discontinuity, or
polynomials only up to quadratics (once again in a local setting) to optimally capture effects
of the running variable. Recent work from Pei et al. (2021) suggest that in some local set
tings, higher polynomials may actually behave reasonably well, and propose an optimal (mean
squared error minimizing) procedure to select the degree for local polynomials.

Selection of a Kernel A separate consideration relates to how to weight observations local
to the cutoff. This is defined using a kernel density, generally referred to as K(·). The kernel



82 CHAPTER 3. ESTIMATION WITH LOCAL MANIPULATIONS

allows for observations to be assigned more or less weight based on their proximity to the cut
off. A kernel is a function which integrates to 1, and which defines how much weight to assign
to observations at specific points of the density. A valid kernel then must integrate to 1 and
be nonnegative. Often, but not always, kernels are symmetric. Commonly used kernels are
described in Figure 3.6. In RD designs a triangular kernel is often used, which gives the largest
weight to observations which are closest to the cutoff, and which then declines linearly away
from this point. Cattaneo and Titiunik (2022) suggest that triangular kernels have MSE optimal
properties, while uniform kernels, which give identical weights to each observation local to
the cutoff are also often used as these minimize the variance of local polynomial estimators,
resulting in narrower confidence intervals.

Figure 3.6: Common Kernel Densities
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Selection of Bandwidth The selection of the bandwidth in regression discontinuity estimators
is an area with significant research advances in the last decade. The selection of bandwidth h

implies that estimation will proceed using only observations who fall within the range xi ∈
[κ−h, κ+h]. The primary reason for using a largerthaninfinitesimal bandwidth is, of course,
sample size. This is a perfect example of the biasvariance tradeoffs we sometimes come
across in econometrics. While we would like to use only those observations who are just above
of below the cutoff, if we restrict to too small a sample, estimates will be too imprecise to
permit any constructive inference.

Fortunately, there is a considerable amount of work on how to optimally balance this trade
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off. Early work by Imbens and Kalyanaraman (2012), sometimes called first generation band
width estimators, provide specific guidelines for bandwidth choice.5 The plugin estimator for
h provides a formula to determine the optimal bandwidth based on, among other things, the
sample size available. This formula explicitly recognises the biasvariance tradeoff discussed
above, depending (negatively) on the bias and (positively) on the variance. The suggested for
mula for h proposed by Imbens and Kalyanaraman (2012) is:

ĥIK =

(
V̂IK

2(p+ 1)B̂2
IK + R̂IK

) 1
(2p+3)

× n
−1

(2p+3) , (3.30)

where n is the sample size, p is the degree of the polynomial included on each side of the discon
tinuity, V̂ is an estimate of the variance of the RD parameter τ̂ , B̂ is an estimate of the bias of
this parameter, and R̂ is a regularisation term to avoid small denominators when the sample size
is not large. Alternatively, Imbens and Kalyanaraman (2012) discuss a manner of calculating
optimal h using a crossvalidation technique which determines the optimal bandwidth based on
the particular sample size of an empirical application (additional details and an example can
also be found in Ludwig and Miller (2000)).

The bandwidth ĥIK will lead to anMSE optimal estimator for the parameter τ , but this relies
on the underlying estimates for the variance, V̂IK , the bias, B̂IK and the regularization term.
While Imbens and Kalyanaraman (2012) propose estimates for these quantities, the estimates
themselves rely on an initial bandwidth, which is itself not optimally chosen. This was followed
up bymore recent work (Calonico et al., 2014a) which has provided enhancements to the plugin
bandwidth of (Imbens and Kalyanaraman, 2012), suggesting

ĥCCT =

(
V̂CCT

2(p+ 1)B̂2
CCT + R̂CCT

) 1
(2p+3)

× n
−1

(2p+3) , (3.31)

where V̂CCT , B̂CCT , and R̂CCT are consistent estimates of their population counterparts, while
also using MSEoptimal bandwidths in the generation of these estimates. The precise formulae
for these estimates are provided in the appendix of Calonico et al. (2014a) though are quite
cumbresome. Fortunately, all of these optimal bandwidth algorithms are available in statis
tical programming languages such as Stata and R (see for example Calonico et al. (2014b))
so the stability of estimates to different techniques can be examined quite simply. A website
is maintained by the authors of this and other related papers at providing a huge amount of
useful related econometric material and information about computational implementations at
https://rdpackages.github.io/.

5Packages to implement this are available in Stata and SAS to select the optimal bandwidth. Similar programs
also exist for R, MATLAB, and most other computer languages in which econometric estimators are run. More
recent optimal bandwidht choice packages described below are provided by the original authors for R, Stata and
Python.

https://rdpackages.github.io/
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Bringing The Ingredients Together With all of the preceding ingredients in hand – a poly
nomial degree, a kernel and an optimal bandwidth, estimation of the treatment effect in RDDs
consists of comparing conditional expectations at the limits on either side of the cutpoint. On
the lefthand side of the cutoff,

β̂− = argmin
β

N∑
i=1

1{Xi < κ} [yi − β0 − β1(Xi − κ)]2K

(
Xi − κ

h

)

where β̂− refers to the vector of parameter estimates β̂+,0, β̂+,1 on the lefthand side of the cut
off, and here we are using a linear polynomial, p = 1. Similarly, on the righthand side of the
cutoff:

β̂+ = argmin
β

N∑
i=1

1{Xi ≥ κ} [yi − β0 − β1(Xi − κ)]2K

(
Xi − κ

h

)
.

Based on these estimates, the regression discontinuity estimate τ̂ the difference of the intercept
at the cutoff point:

τ̂ = β̂+,0 − β̂−,0. (3.32)

What is nice about this estimate is that it is clear that we are interested in the intercepts on either
side of the cutoff, ie the regression estimates at the points where the discontinuity occurs. Under
the assumption of local unconfoundedness, τ̂ from equation 3.32 is a consistent estimate for τ
from equation 3.26.

The theory behind the estimation of the confidence intervals for this parameter τ̂ is not
trivial. As we are interested in estimates directly at the threshold of the regression discontinuity,
there is bias due to smoothing of the regression approximation at this point. There is a recent
and large body of work on the estimation of standard errors and confidence intervals, with recent
implementations often favouring the “robustbias corrected” confidence intervals proposed in
Calonico et al. (2014a). Additional detail can be found in the overview paper of Cattaneo and
Titiunik (2022, section 3.2).

Graphical Representations

Arguably, one of the reasons why RD is a successful identification strategy is that it often
leads to visually striking representations of the causal effect under study. A shift owing to some
arbitrary crossing rule in the running variable generates exogenous variation in the exposure
to some particular phenomenon, and this shift can be graphed quite simply in two dimensions.
When examining how some outcome of interest moves along the support of the running variable,
we can observe both a general pattern describing the relationship between the running variable
and the outcome of interest, and importantly, visually inspect for any discontinuities at the
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assignment thresold.

Figure 3.7: Graphical Representation in an RD Design
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(c) 20 Bins on Each Side
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(d) Optimal Bin Selection

Thus, generally, studies involving a RDD will plot the underlying variation between the
running variable and outcome of interest (as well as potentially other patterns described later in
this section). Generally, rather than plotting the full dataset, some smoothed function is plotted
of averages of outcomes at various points of the running variable. For example, consider the
simulated data presented in Figure 3.7. Here a simple discontinuity6 exists when the running

6This is simulated as:
yi = −2 + 0.5wi + 0.03w2

i + 2Treati + εi

where wi is a uniform variable with support on [2,2], εi ∼ N (0, 1) and Treati ≡ 1{wi > 0}, for i ∈
{1, . . . , 1000}.
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variable plotted on the horizontal access moves from negative to 0 or above. In panel (a) the
full data is plotted, where the discontinuity is clearly visible, though the nature of the jump is
somewhat disguised by the underlying variation at each point. Remaining panels (b)(d) present
alternative plots, commonly referred to as “RD plots”, where instead of presenting raw data,
binned averages are presented in varying numbers of points. In these graphs, each point refers
to the average outcomes in small ranges of the running variable, containing mutually exclusive
groups of individuals. Here, the size of points refers to the number of individuals contained in
each group, and on top of each scatter plot, a quadratic fit of the averaged data is plotted.

Frequently, these bins are chosen arbitrarily (for example using 10 and 20 bins as in panels
(b) and (c) of Figure 3.7). However, there are optimal ways to determine bins and generate RD
plots. The work of Calonico et al. (2015) provides a datadriven rule for bin selection (as well
as allowing for the suggestion of an optimally defined polynomial fit in the graph), which, in the
case of bin estimates, are chosen to be evenly spaced or quantile spaced. Evenly spaced refers
to bins that are spaced at an equal absolute difference in the running variable, while quantile
spaced refers to bins which are spaced such that they are distributed evenly across percentiles
of the observed data (taking into account that data may be more sparse at different values of
the running variable). These bins are optimally chosen in a way which minimizes the mean
squared error of the regression function describing the relationship between binned averages
and the outcome variable of interest. The mean squared error measures the distance between
observed averages and the regressionbased prediction, and can be shown to be a sum of the
variance of the estimate and the square of the bias. Thus, these optimal bins act to tradeoff
lower variance and lower bias. Full details of these optimal bins, as well as optimal selection
of polynomial fits, can be found in Calonico et al. (2015), and computational implementations
of this procedure are widely available.

These binned RD plots are generally presented to document the underlying relationship
between the running variable and the outcome of interest. However, these plots can also be
documented for variables which one would expect to be balanced around the RD cutoff. For
example, if some measure is available for baseline outcomes of individuals capturing charac
teristics prior to their assignment to the RD treatment, graphs can be generated to examine
whether any discontinuities in baseline outcomes are observed at the point of the discontinuity.
If the assumption of local unconfoundedness really is met, one would not expect a similar jump
in baseline outcomes at this point. These graphs can thus be used to visually assess whether
the assumption of local unconfoundedness is reasonable. We turn to this point more formally
below.
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3.2.4 Assessing Unconfoundedness

The continuity argument that we used to show that the RD approach estimates a treatment
effect suggests a way of testing the underlying assumption. If variation in x around the discon
tinuity is “as good as” random, then it should also be the case that other variables do not jump
at this discontinuity. This is analogous to a balance or placebo test often implemented prior to
analyzing data from a randomized, controlled trial (Imbens and Wooldridge, 2009).

A simple way to implement this is to use the same specification as in the outcomes equation,
but use instead as a dependent variable some “exogenous” covariateZi and test limx↓κE(zi|x >

κ)−limx↑κE(zi|x < κ) = 0. If a discontinuity is found in a covariate zi, this provides evidence
that the assumptions underlying the RD design do not hold, even if it is in principle possible to
address this by controlling for the covariate in question. For example, Urquiola and Verhoogen
(2009) study a RD design which uses class size caps to estimate the effect of class size on
children achievement in Chile. They show that in this context parental education and income
drop discontinuously at the cutoff, which suggests that better educated parents choose schools
where classes are smaller.

Figure 3.8: McCrary test of heaping of running variable (vote shares)

r ¼ X 1;X 2; . . . ;XJ . The binsize and bandwidth were again chosen subjectively after using the automatic
procedure. Much more so than the vote share density, the roll call density exhibits very specific features near
the cutoff point that are hard for any automatic procedure to identify.27

The figure strongly suggests that the underlying density function is discontinuous at 50%. Outcomes within
a handful of votes of the cutoff are much more likely to be won than lost; the first-step histogram indicates
that the passage of a roll call vote by 1–2 votes is 2.6 times more likely than the failure of a roll call vote by 1–2
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Fig. 4. Democratic vote share relative to cutoff: popular elections to the House of Representatives, 1900–1990.

Table 2

Log discontinuity estimates

Popular elections Roll call votes

�0.060 0.521

(0.108) (0.079)

N 16,917 35,052

Note: Standard errors in parentheses. See text for details.
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Fig. 5. Percent voting yeay: roll call votes, U.S. House of Representatives, 1857–2004.

27I use a binsize of b ¼ 0:003 and a bandwidth of h ¼ 0:03. The automatic procedure would select b ¼ 0:0025 and h ¼ 0:114.

J. McCrary / Journal of Econometrics 142 (2008) 698–714710

Another tests suggested by McCrary (2008) consists in estimating non parametrically the
density of the forcing variable (e.g. through kernel regression) and testing whether it presents
some discontinuity around the threshold, i.e. whether limx↓κ fX(x) − limx↑κ fX(x) = 0. If a
discontinuity is found in the density of x, then it is likely that individuals were able to manip
ulate precisely x to choose on which side of the cutoff they were located (e.g. income around
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“jumps” in the marginal tax rate Kleven and Waseem (2013)). This would cast serious doubt
on the RD strategy. Figure 3.8 displays the logic of the test. If there were manipulation of the
running variable (in this example, vote share) we may expect to see a heaping of election win
ners with vote shares just above 50%. This would be evidence in favour of vote buying or some
other ballot manipulation, and strong evidence against the validity of a local unconfoundedness
assumptions. In practice, we see little statistical evidence to suggest that such heaping occurs
in this example.

3.2.5 Regression Kink Designs

The regression discontinuity design discussed in previous sections is based on the idea that
an external effect creates a discontinuous jump in the likelihood of receiving treatment at a
particular point. Another set of methodologies exist when, rather than an appreciable jump in
levels, we may expect an appeciable change in the slope of a relationship at a particular point.
These “regression kink designs” are very closely related to the RDDs discussed above, however
now we are more interested in the sharp change in the first differential, rather than the level of
the variable itself. Examples of kinks from the economic literature include changes in rates of
unemployment benefits by time out of work (Landais, 2015), changes in drug reimbursement
rates (Simonsen et al., 2016) and various other applications (see table 1 from Ganong and Jäger
(2014) for a more exhaustive list).

Card et al. (2015) provide extensive details on the estimation methods and assumptions un
derlying the regression kink design. Many of the considerations, such as bandwidth calculation
and polynomial order are very similar to those in regression discontinuity designs (see also
Calonico et al. (2014a) who extend their RDD discussion to the RKD case). In practice, the
regression kink design consists of estimating the change in the slope of the outcome variable of
interest yi at the discontinuity:

yi = β0+β+
1 Di(xi−κ)+β−

1 (1−Di)(xi−κ)+β+
2 Di(xi−κ)2+β−

2 (1−Di)(xi−κ)2+εi (3.33)

where hereDi is a binary variable taking 1 when located to the right of the kink, and zero other
wise. Here we are assuming a quadratic functional form, but again, this is can be generalised to
other polynomial orders.7 In order to calculate the treatment effect of the change in exposure,
we calculate the RKD estimator as:

τ̂RKD =
β̂+
1 − β̂−

1

γ̂+
1 − γ̂−

1

7A useful discussion of how to optimally choose polynomial orders is available in Card et al. (2015), who also
provide a pointer to other results.
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where the estimates of γ are generated by running a similar regression as in equation 3.33,
however replacing the outcome variable yi with the treatment variable. These coefficients cap
ture the corresponding change in the slope of the treatment variable at the discontinuity point.
In many cases, the values in the denominator may be known constants, if, for example, they
are based on explicit marginal rules, and in these cases rather than estimates, the actual values
should be used.

The regression kink setup relies on similar types of assumptions as those in a regression
discontinuity. Namely, we require that no other variables of relevance change their slope at the
kink point, and there should be no manipulation of the running variable around the kink point
suggestive of people strategically sorting in to points to be eligible for benefits on either side of
the cutoff. Fortunately, as is the case with RDDs, these assumptions can be probed with some
of the methods described in the previous subsection.
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Empirical Exercise 3: Trafficking Networks and the Mexican Drug War

This exercise will have two parts. An applied part, and a part we will simulate ourselves.

The first part of the class (question A) will look at the paper “Trafficking Networks and
the Mexican Drug War”, by Dell (2015). Her paper examines the effect of Mexican
antidrug policy on drug related violence. She exploits variation in the mayor’s party
following elections, and uses close elections to estimate using a regression discontinuity
design. The PAN party has implemented a number of largescale antitrafficking measures,
and she examines whether these policies have an effect on drug violence. For further
background, the paper is very interesting reading! For part 1, you are provided with the
dataset DrugTrafficking.dta, which has variables measuring vote share in close elections
(only close elections are included), homicides and the rate of homicides, as well as whether
the election was won by PAN. A graphical result from the paper (which you will replicate
yourselves) is presented below.

For the second part (question B), we will simulate our own data, to examine how regression
discontinuity performs when we know the exact data generating process (DGP). Simulation
is useful exercise in examining the performance of an estimator in recovering a known
parameter: something we only have if we have control of the unobservables.

Replication of figure 4 panel B of Dell (2015) “Trafficking Networks and the Mexican Drug War”, American
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Questions:
(A) Estimating a Regression Discontinuity with Dell (2015) Open the dataset DrugTraf
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ficking.dta, and run the following regression, as per Dell’s equation 1:

HomicideRatem = β0 + β1PANwinm + β2PANwinm × f(V oteDifm) (3.34)

+β3(1− PANwinm)× f(V oteDifm) + εm

PANwinm is a binary term for whether PAN won in the close election, while the interaction
terms are functions of vote shares on either side of the close election margin, allowing for this
“running variable” to behave differently on each side of the discontinuity. In each case we
will use the variableHomicideRatem, the rate of homicides at the level of the municipality,
as our outcome variable of interest.

1. Run the regression using a linear function for f(V oteDifm) on each side of the dis
continuity.

2. Run the regression using a quadratic function for f(V oteDifm) on each side of the
discontinuity. This will require two terms (linear and squared) on each side of the
discontinuity.

3. Replicate the figure on the previous page (panel 4 B from Dell’s paper). There is
no need to worry about formatting, nor plotting the confidence intervals which are
displayed as dotted lines. Note that each point is the average homicide rate in vote
share bins of 0.005. You can plot the solid lines on either side of the discontinuity
using a quadratic (for example qfit).

4. Why do we focus only on the range of vote margins of 0.05 to +0.05?

(B) Simulating a Regression Discontinuity In this question, we will simulate a discontinu
ous relationship, and examine how using a local linear regression to capture the discontinuity
is appropriate to capture the true effect when the relationship between the running variable
(x) and the outcome variable (y) is not linear. We will refer to figure 5 in the notes to simulate
our data. This is based on the following DGP:

y = 0.6x3 + 5w + ε

Here y is the outcome variable, x is the running variable, and w is the treatment variable.
Treatment will only be received by individuals for whom x ≥ 0, so w is defined as equal to
1 if x ≥ 0 and 0 if x < 0.

1. Simulate 100 data points which follow the above specification. Note that for this spec
ification, both x and ε are assumed to be drawn from a normal distribution, with mean
0 and standard deviation 1. In Stata, these can be generated the rnormal() function,
for example, gen epsilon = rnormal(). The set obs command can be used to
define the number of observations to be simulated.
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2. Replicate figure 5 from the notes. Do not worry about style. If you want your pseudo
random numbers to exactly replicate those from the notes, before drawing the numbers,
use the command set seed 110.

3. Estimate the coefficient on the treatment effect w using a linear control for the run
ning variable while concentrating on the observations in the range x ∈ (−2, 2), x ∈
(−1.9, 1.9), . . . , x ∈ (−0.1, 0.1). Estimation of the effect should use a regression
following the above function for y. You can capture the running variable using the
same linear trend on both sides, so only need to let x enter the regression linearly, and
with no interaction term. This will result in 20 different estimates (one for each set
of x ranges). Feel free to display these as you wish, though a graph may be useful in
visualising them easily.

Hint: Rather than doing this all by hand, it may be useful to use a loop! As an ex
ample, consider running a regression of y on x only for those observation who have x
greater than a series of numbers, and saving the coefficient on x from each regression
as a seperate observation in the variable coefficients, and the x cutoff from each
regression in the variable cutoff:
gen coefficients = .
gen cutoff = .
local i = 1
foreach num of numlist 0.1(0.1)2 {

reg y x if x > `num'
replace coefficients = _b[x] in `i'
replace cutoff = `num' in `i'
local i = `i'+1

}

You will need to apply this code to the specific example in question 3, which will
require some modifications!

4. What do the above results tell you about the performance of RDD using local linear
regressions? Is there some theoretical guidance on how to determine the optimal band
width? If so, what are the considerations in making this choice?



Chapter 4

Testing, Testing: Hypothesis Testing in
QuasiExperimental Designs

Required Readings
Romano et al. (2010) (section 8 only)

Suggested Readings
Anderson (2008)
Dobbie and Fryer (2015)
Gertler et al. (2014)

The nature of frequentist stastical tests implies that we will at times make mistakes. Indeed,
this is built directly into the framework which we have also used in inference up to this point.
When we refer to a parameter being significant at 95%, we mean that if we were able to repeat
this test many times, in 5% of those we would incorrectly reject the null hypothesis. In general,
this is not a problem as long as our inference respects the nature of these tests, and our findings
are taken in light of this chance. However, in this final section of the course we will consider a
number of situations in which thismay be a problem. The first: how to consider hypothesis tests
when we have multiple dependent variables is a technical issue for which, fortunately, there are
many solutions. The second, abuse of the notion of frequentist testing owing to incentives to
report a significant result is a deeper problem related to research in social sciences, on which a
lot of attention is only recently being placed.

If researchers are selectively more likely to report positive results, or if there are strong
incentives in place which mean that statistically significant findings are more valuable, the
nature of our traditional hypothesis tests breaks down. At its most extreme, the crux of this

93
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problem is summed up precisely by Olken (2015). As he states:

“Imagine a nefarious researcher in economics who is only interested in finding a
statistically significant result of an experiment. The researcher has 100 different
variables he could examine, and the truth is that the experiment has no impact. By
construction, the researcher should find an average of five of these variables statis
tically significantly different between the treatment group and the control group at
the 5 percent level—after all, the exact definition of 5 percent significance implies
that there will be a 5 percent false rejection rate of the null hypothesis that there is
no difference between the groups. The nefarious researcher, who is interested only
in showing that this experiment has an effect, chooses to report only the results on
the five variables that pass the statistically significant threshold.”

Olken (2015), p. 61.

And indeed, this problem is certainly not new, and is not isolated to only the social sciences!
A particularly elegant (graphical) representation of a similar problem is described in the figure
overleaf.

In this section we will, briefly, recap the ideas behind the basic hypothesis test and the types
of errors and uncertainty that exists. Then we will discuss how these tests can be extended to
take into account various challenges, including very large sample sizes, and the use of multiple
dependent variables. We will then close discussing one particular way which is increasingly
used to avoid concerns about the selective reporting problem described above, namely, the use
of a preanalysis plan to preregister analyses before data are in hand, thus removing so called
“researcher degrees of freedom” from analysis.1

4.1 Size and Power of a Test

In order to think about hypothesis testing and the way that we would like to be able to
classify treatment effects, we will start by briefly returning to the typical error rates from simple
hypothesis tests. Let’s consider a hypothesis test of the type:

H0 : β1 = k versus H1 : β1 ̸= k.

In the above, our parameter of interest is β1, and k is just some value which we (the hypothesis
tester) fix based on our hypothesis of interest.

1For some interesting additional discussion on these issues refer to work by Andrew Gelman and colleagues
(for example Gelman and Loken (2013)). Andrew Gelman also has a blog where he provides frequent interesting
analysis on issues of this type (http://andrewgelman.com).

http://andrewgelman.com
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Figure 4.1: A Funny Comic but a Serious Problem (Munroe, 2010)
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Given that β1 is a population parameter, we will never know with certainty if the equality
in H0 (the “null hypothesis”) holds. The best that we can do is ask how likely or unlikely is it
that this hypothesis is true given the information which we have available to us in our sample
of data. In simple terms, producing an estimate for β1 which is very far away from k will (all
else constant) give us more evidence to believe that the hypothesis should not be accepted.

Classical hypothesis testing then consists of deciding to reject or not reject the null hypoth
esis given the information available to us. Although we will never know if we have correctly
or incorrectly rejected a null, there are four possible states of the world once a hypothesis test
has been conducted: correctly reject the null; incorrectly reject the null; correctly fail to reject
the null; incorrectly fail to reject the null. Two of these outcomes (the underlined outcomes)
are errors. In an ideal world, we would like to perfectly classify hypotheses, never committing
either types of the errors above. However, given that in applied econometrics we never know
the true parameter β1, and that hypothesis tests are based on stochastic (noisy) realizations of
data, we can never simultaneously eliminate both types errors.

4.1.1 The Size of a Test

The size of a test refers to the probability of committing a Type I error. A type I error
occurs when the null hypothesis is rejected, even though it is true. In the above example, this
is tantamount to concluding that β1 ̸= k despite the fact that β1 actually is equal to k. Such a
situation could occur, for example, if by chance a sample of the population is chosen who all
have higher than average values of β1

The rate of type I error (or the size of the test) is typically denoted by α. We then refer to
1 − α as the confidence interval. Typically we focus on values of α such as 0.052, implying
that if we repeated a hypothesis 100 times (with different samples of data of course) then in
5 out of every 100 times we would incorrectly reject the null if the hypothesis were actually
true. In cases where we run a regression and examine whether a particular parameter is equal
to zero, setting the size of the test equal to 5 implies that in 5% of repeated tests we would find
a significant effect even when there is no effect.

In figure 4.2, the red regions of the lefthand curve refer to the type I error. Assuming that
the true parameter β1 is equal to 4 and the distribution of the estimator for the parameter β̂1 is
normal around its mean, we will consider as evidence against the null any value of β̂1 which is
outside of the range 4 ± 1.96σ (where σ refers to the standard deviation of the distribution of
the estimator). We do this knowing full well that in certain samples from the true population

2Lehmann and Romano (2005, p. 57) report that standard values for α were originally chosen given that it
allowed for fewer statistical tables to be produced when critical values where generally tabulated. Currently, the
ease of generating critical values with a computer is so easy that this is no longer necessary, but the practice has
stuck.
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Figure 4.2: Type I and Type II Errors

1.96σ
4 6.5
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y

(in 5% of them to be exact!) we will be unlucky enough to reject the null even though the true
parameter is actually 4. Of course, there is nothing which requires us to set the size of the test at
α = 0.05. If we are concerned that we will commit too many type I errors, then we can simply
increase the size of our test to, say, α = 0.01, effectively demanding stronger evidence from
our sample before we are willing to reject the null.

4.1.2 The Power of a Test

Power in Detecting Impacts Versus a Scalar Null Hypothesis

These discussions of the size of a test and type I errors are entirely concernedwith incorrectly
rejecting the null when it is true. However, they are completely silent on the reverse case: failing
to reject the null when it is actually false. This type of error is referred to as a type II error. We
define the power of a statistical test as the probability that the test will correctly lead to the
rejection of a false null hypothesis. We can then think of the power of a test as the ability that
a test has to detect an effect if the effect actually exists. For example, in the above example
imagine if the true population parameter were 4.01. It seems unlikely that we would be able to
reject a null that β1 = 4, even though it is not true. As we will see below, considerations of the
power of a test are particularly frequent when deciding on the sample size of an experiment or
RCT with the ability to determine a minimum effect size.

The statistical power of a test is denoted by 1 − β, where β refers to the Type II error.
Often, you may read that tests with power of greater than 0.8 (or β ≤ 0.2) are considered to be
powerful. An illustration of the concept of statistical power is provided in figure 4.2. Imagine
that we would like to test the null that β1 = 4, and would like to know what the power of the
test would be if the actual effect was 6.5. This amounts to asking, over what portion of the
distribution of the true effect (with mean 6.5), will the estimate lie in a zone which causes us
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not to reject the null that β1 = 4. As we see in figure 4.2, there is a reasonable portion of
the distribution (the shaded blue portion) where we would (incorrectly) not reject the null that
β1 = 4 if the true effect were equal to 6.5.

In looking at figure 4.2, we can distinguish a number of features of the power of a test.
Firstly, the power of a test will increase as the distance between the null and the true parameter
increase. This is to say that we would have greater power when considering 7 to β1 = 4 than 6.5
to β1 = 4 (all else equal). Secondly, we will have greater power when the standard error of the
estimate is smaller. As the standard error gives the dispersion of the two distributions, as these
dispersions shrink, we will be more able to pick up differences between parameters. As the
standard error depends (positively) on the standard deviation of the estimate and (negatively)
on the sample size, the most common way to increase power is by increasing the sample size.
Finally, we can see that by increasing the size of the test (ie changing the significance level
from p = 0.05 to p = 0.10), that this increases the power of the test. We can see this in figure
4.2, as by increasing the red area (that is, increasing the likelihood of making a type II error),
we shrink the size of the blue area (we reduce the likelihood of a type I error). Here we see an
interesting and important fact: we can not simultaneously both increase the power and reduce
the size of the test simply by changing the significance level. Indeed, the opposite is true, as
there exists a tradeoff between type I and type II errors in this case.

These three facts can be summed up in what we know as a “power function”. Although
figure 4.2 only considers one value (6.5), we can consider a similar power calculation for a
whole range of values. The power function summarises for us the power of a test given a
particular true value, conditional on the sample size, standard deviation, and value for α. In
particular, imagine that we have a parameter β1 which we believe follows a tdistribution, and
for which we want to test the null hypothesis that H0 : β1 = 4. Let’s imagine now that the
alternative is actually true, and βT

1 = θ, where we use βT
1 to indicate it is the true value. We can

thus derive the power at α = 0.05 using the below formula, where we use the critical value of
1.64 from the tdistribution:

B(θ) = Pr(tβ1 > 1.64|βT
1 = θ)

= Pr

(
β̂1 − 4

σ2/
√
N

> 1.64

∣∣∣∣βT
1 = θ

)

≈ 1− Φ

(
1.64− θ

σ2/
√
N

)
. (4.1)

where the final line comes from using the normal distribution as an approximation for the t
distribution when N is large. The idea of this forumla is summarised below in the power func
tions described in figure 4.3. In the lefthand panel we observe the power function under varying
sample sizes (and values for θ), and in the righthand panel observe the power functions where
the size of the test changes (and once again, for a range of values for θ).
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Figure 4.3: Power Curves
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Power in Detecting Differences Between Groups

A particular case where power is often discussed is in the design of RCTs, where one, ex
ante, must decide on a required sample size, with larger sample sizes implying larger costs in
treatment, enumeration, and so forth. Generally, the sample size is chosen to ensure a power
to detect some minimum desired effect size between a treatment and a control group. A nice
discussion of this can be found in Athey and Imbens (2017, pp. 102–104). If you are ever in the
situation of implementing an RCT, it is worth reading this carefully, along with the references
cited therein such as Cohen (1988); Murphy et al. (2014) or other readings discussed in Chapter
1 of these notes. We will briefly review this consideration below, following the notation of
Athey and Imbens (2017).

Let τ signify the true treatment effect of receiving some treatment, and assume that γ refers
to the proportion of individuals receiving treatment, with the remaining proportion 1−γ acting
as control units. For simplicity, assume that the variance of outcomes is the same, indicate by
σ2. In what follows, subscript t will refer to units receiving treatment, and subscript c will
refer to units acting as controls. Generally, when conducting power calculations, we wish to
determine the minimum sample size necessary, N = Nc +Nt, to assure a rejection probability
of at least β given that the alternative hypothesis is true, and the true treatment effect is τ . We
can start from the standard result that the difference in means between treatment and control
minus the true treatment effect divided by the standard error of this difference is approximately
a standard normal distribution:

Ȳt − Ȳc − τ√
σ2/Nt + σ2/Nc

≈ N (0, 1). (4.2)
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Now, consider the tstatistic which will be tested when examining a null of a zero effect:

t =
Ȳt − Ȳc√

σ2/Nt + σ2/Nc

. (4.3)

Rearranging the result from 4.2, implies that 4.3 has an approximately normal distribution as:

t ≈ N

(
τ√

σ2/Nt + σ2/Nc

, 1

)
.

Considering the properties of the normal distribution, this implies that the probability of reject
ing the null of equality between groups at a signficance level α if the true effect is τ is:

Pr(|t| > Φ−1(1− α/2)) ≈ Φ

(
−Φ−1(1− α/2) +

τ√
σ2/Nt + σ2/Nc

)
(4.4)

+Φ

(
−Φ−1(1− α/2)− τ√

σ2/Nt + σ2/Nc

)
,

where Φ refers to the standard normal CDF, and Φ−1 its inverse. The second term here is
small (strictly smaller than Φ(−Φ−1(1 − α/2)), for example strictly smaller than 0.025 when
α = 0.05), and as such we will ignore it in what follows.

We wish to ensure a minimum power of 1− β, so from 4.4:

1− β = Φ

(
−Φ−1(1− α/2) +

τ√
σ2/Nt + σ2/Nc

)

which can be simplified as:

Φ−1(1− β) = −Φ−1(1− α/2) +
τ
√
N
√

γ(1− γ)

σ
,

finally allowing us to arrive to a formula for the effective sample size required to detect a min
imum treatent effect of τ , depending on the desired α, β, γ and standard deviation σ as:

N =
(Φ−1(1− β) + Φ−1(1− α/2))

2

(τ 2/σ2) · γ · (1− γ)
.

A brief applied example illustrating such a calculation is provided by Athey and Imbens (2017,
p. 104).
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4.2 Hypothesis Testing with Large Sample Sizes

While in typical experimental analyses we are much more likely to be concerned about a
sample size which is too small to permit precise inference, we should—briefly at least—discuss
the reverse case. In some circumstances we will be working with very large samples of data.
This is particularly so when using quasiexperimental methods, and for example, administrative
datasets. In these cases it may not be at all uncommon to work with millions or even tens of
millions of observations.

In these cases, we will likely find that nearly everything is significant when conducting
hypothesis tests of the sort β = β0. This is of course not a reflection that the truth surrounding a
hypothesis depends on the sample size, but rather a feature of the way we calculate test statistics.
As our typical test statistics depend inversely on the standard errors of estimated coefficients,
and as these coefficients depend inversely on sample size, then as the sample size grows it is
easier for us to find that our test statistic exceeds some fixed critical value.

This fact has been well pointed out and discussed in various important applied texts. Deaton
(1997) provides an extremely clear discussion of this phenomena, drawing on a more extensive
set of results from Leamer (1978). As the sample size grows, we have increasing quantities of
informationwithwhich to test our hypotheses. AsDeaton (1997) points out, why then shouldwe
be content with still rejecting the null hypothesis in 5% of the cases when it is true? As we have
seen in the previous section, increasing the sample size increases the power of a test, reducing
the likelihood that we commit a type I error. However, as we gain more and more power with
the increasing sample size, it seems inefficient to maintain fixed the size of the test, committing
equally as many type II errors. Rather, it is suggested by Deaton (1997), Leamer (1978) and
others that we should dedicate at least some of the additional sample size to reducing the size of
the test, lowering the probability of incorrectly rejecting the null. Lehmann and Romano (2005)
state this in the sense that when power is very close to 1, α can be reduced without losing very
much power at all, suggesting potentially a large gain in size without much cost to power.

In practice, it is suggested that we should set critical values for rejection of the null which
increase with the sample size. While the full details of the derivation go beyond what we will
look at here3 the suggestion is actually rather simple. Rather than simply rejecting an F or t
test if the test statistic exceeds some critical value, we should reject the test if:

F >

(
N −K

P

)(
N

P
N − 1

)
or t >

√
(N −K)

(
N

1
N − 1

)
,

whereN refers to the sample size,K the number of parameters in the model, and P the number
of restrictions to be tested. Moreover, as Deaton (1997) points out, these values can be approx

3They can be found in Leamer (1978) and are based on Bayesian, rather than classical, hypothesis testing
procedures.



102CHAPTER4. TESTING, TESTING:HYPOTHESIS TESTING INQUASIEXPERIMENTALDESIGNS

imated by logN and
√
logN respectively. Clearly then, these tests set the rejection of the null

in a way that it grows with the sample size, and so the rate of type II errors will become increas
ingly small. For an empirical application in which this methods is employed, see for example
Clarke et al. (2016).

4.3 Multiple Hypothesis Testing and Error Rates

In the previous sections we have thought about hypothesis tests where we are interested in
conducting a single test, either based on a single parameter (a ttest) or multiple parameters
(an F test). Setting the rejection rate of a simple hypothesis test of this type at α leads to
an unequivocal rule with regards to acceptance or rejection of the null, and a similarly clear
understanding of the rate of type II errors. exceeds the critical value at α, reject H0, otherwise
do not reject.

However, we may not always have a single hypothesis to test. For example, what happens if
we have a single experiment (leading to one exogenous independent variable) which we hypoth
esise may have an effect on multiple outcome variables? This is what we refer to as “multiple
hypothesis testing”,4 and it brings about a series of new challenges. To see why, consider the
case of a single independent variable and two outcome variables. If we run the regression once
using the first outcome variable and test our hypothesis of interest, we will have a type I error
rate of α. However, if we then also the regression a second time using the second outcome
variable, the chance of making at least one type I error in these tests now exceeds α, as both
regressions contribute their own risk of falsely rejecting a null. This may have very important
consequences for the way that we think about the effect of a policy. If we consider that evi
dence of an effect of the policy on any variable in a broad class is suggestive that the policy is
worthwhile, the accumulation of type I errors will make us more likely to find that a policy is
worthwhile as the number of variables examined increases.

More generally, assuming for simplicity that each hypothesis test is independent, the like
lihood of falsely rejecting at least one null incorrectly in a series of m tests when all the null
hypotheses are correct is equal to 1 − (1 − α)m. Thus, if 10 hypotheses relating to 10 out
come variables are tested, the likelihood of at least one true null hypothesis being rejected is
1− (1− 0.05)10 = 0.401!

This is clearly problematic, and something that we need to think about. However, before

4We should be quite careful in making sure that we understand the difference between a test where we are
intersted in knowing if there are various independent variables which may affect a single dependent variable, in
which case all we need is an F test, and one in which a single independent variable may impact various dependent
variables. It is the latter which we are concerned with, as in this case we will be estimating various regression
models with different outcome variables.
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continuing to examine a series of proposed solutions, we will discuss a series of alternative error
rates which are relevant when working with multiple hypotheses. When considering multiple,
rather than single hypothesis tests, it is not clear that there is only one way to think about the
type I error rates associated with hypothesis tests. For example, should we demand that our
hypothesis tests with multiple variables should set error rates based on falsely rejecting any one
of the hypotheses in a group, or the total percent of all hypotheses in a family, or some other
rejection rate?

This gives rise to different error rates. Among these, the Family Wise Error Rate (FWER),
the Generalised FWER (kFWER), and the False Discovery Rate (FDR). The Familywise Er
rorRate (FWER) gives the probability of rejecting at least one null hypothesis in a family when
the null hypothesis is actually true. The Generalised Familywise Error Rate (kFWER) is
similar to the familywise error rate, however, now instead of the probability of falsely rejecting
at least one null hypothesis, it now refers to the probability of rejecting at least k null hypotheses,
where k is a positive integer. Finally, the False Discovery Rate (FDR) refers to the proportion
of all expected “discoveries” (rejected null hypotheses) which are true.

These different error rates are clearly different, with the FWER being more demanding than
the FDR. In the family wise error rate, we demand that were we test all our multiple hypotheses
many times using separate draws from the DGP, only in α% of the cases would we falsely reject
any of these hypotheses. On the other hand, with the FDR, we know that with a significantly
large number of findings, α% will actually be false. There exist a range of methods to control
the FWER or the FDR. The type of method used will depend largely on the context. Where any
evidence in favour of a hypothesis is instrumental in applied research, it may be most correct
to fix the FWER, as this way our error rates take into account the likelihood of falsely rejecting
any null. However, although the FWER is more demanding and hence gives rise to stronger
evidence where a null is rejected, it should be recognised that there will be circumstances in
which the FWER is simply too demanding to work in practice. Mainly, this is the case when the
number of hypotheses in a family is so large that it will be very difficult to avoid falsely rejecting
any hypothesis. In the sections below we discuss different correction methods to control for
these two rates.

4.4 Multiple Hypothesis Testing Correction Methods

4.4.1 Controlling the FWER

There are a number of proposed ways to adjust significance levels or testing procedures to
account for multiple hypothesis testing by controlling the FWER. Some of these data from as far
back as the early 20th century and are still widely used today. As we will see below, alternative
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procedures are more or less conservative, with important implications to the power of the test.

In what follows, let’s consider a series of S hypothesis tests, which we label H1, . . . , HS .
Thus, the family of tests consists of S null hypotheses, and we will assume that S0 of these are
true null hypotheses. In the traditional sense, each of the S hypotheses is associated with their
own pvalue labelled p1, . . . , pS .

The earliest type of multiple hypothesis adjustment is the Bonferroni (1935) correction. The
Bonferroni correction simply consists of adjusting the rejection level from each of tests in an
identical way. Rather than rejecting each test if ps < α, the rejection rule is set to reject the
null if ps < α

S
. It can be shown that under this procedure, the Family Wise Error Rate is at most

equal to α (though likely much lower). To see why, consider the following:

FWER = Pr

[
S0⋃
s=1

(
ps ≤

α

S

)]
≤

S0∑
s=1

[
Pr
(
ps ≤

α

S

)]
≤ S0

α

S
≤ S

α

S
= α.

In the above, even if all the tested hypotheses are true (ie S = S0) we will never falsely reject
a hypothesis in greater than α% of the families of tests.5 However, this is a particularly de
manding correction. Imagine, for example if we are testing S = 5 hypotheses, and would like
to determine for each whether their exists evidence against the null at a level of α = 0.05. In
order to do so, we must adjust our significance level, and only reject the null at 5% for those
hypothesis for which ps < 0.01. It is simple to see that as we add more and more hypotheis to
the set of test, the global significance level required to reject each null quickly falls.

However, one benefit of the Bonferroni (1935) correction is that it is extremely easy to
implement. It requires no complicated calculations, and can be done ‘by eye’ even where a
paper’s authors may not have reported it themselves. Further, this procedure does not require
any assumptions about the dependence between the pvalues or about the number of true null
hypotheses in the family. Of course, this flexibility comes at a cost…We see below how we can
increase the efficiency of multiple hypothesis testing by taking these into consideration.

SingleStep and Stepwise Methods

The Bonferroni (1935) correction is an example of a singlestep multiple hypothesis testing
correction methodology. In these singlestep procedures, all hypotheses in the family are com
pared in one shot a global rejection rate leading to S reject/don’t reject decisions. However,
there also exists a series of stepwise methods, which rather than comparing all hypotheses at
once, begin with the most significant variable, and iteratively compare it to increasingly less

5The precise details of the proof of the above rely on Boole’s Inequality for the first step. While not necessary
for the results discussed in this course, if you would like further details, most statistical texts will provide useful
details, for example Casella and Berger (2002).
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conservative rejection criterion. The idea of these stepdown methods is that there is an addi
tional chance to reject less significant hypotheses in subsequent steps of the testing procedure
(Romano et al., 2010).

One of the most well known of these methods – which similarly maintains the simplicity we
observed in the Bonferroni correction – is the Holm (1979) multiple correction procedure. This
method begins with a similar idea to the Bonferroni correction, however is less conservative, and
hence more powerful (indeed, it is a “universally more powerful” testing procedure, meaning
it will reject all the false nulls rejected by Bonferroni, and perhaps more). The idea is that
rather than making a oneshot adjustment to α for all S hypotheses, we make a stepwise series
of adjustments, each slightly less demanding given that certain hypotheses have already been
tested. In the Bonferroni correction then simply consists of rejecting the null for all Hs where
ps ≤ α/S.

Holm (1979)’s correction proceeds as follows. First, we order the pvalues associated with
the S hypotheses from smallest to largest:

p(1) ≤ p(2) ≤ · · · ≤ p(S),

and we name the corresponding hypotheses asH(1), H(2), . . . , H(S). We then proceed stepwise,
where each of the hypotheses is rejected at the level of α if:

p(j) ≤
α

(S − j + 1)
∀ j = 1, . . . , S. (4.5)

Thus, in the limit (for the first test), Holm’s procedure is identical to the Bonferroni correction
given that the denominator of equation (4.5) equals S − 1 + 1 = S. And in the other limit
(for the final test), the procedure is identical to a single hypothesis test of size α, given that the
denominator of (4.5) is equal to S − S + 1 = 1.

Bootstrap Testing Procedures Up to this point in these lectures we have always worked with
teststatistics with a closed form solution. For example, a traditional ttest in a regression model
is simply calculated using the estimator and its standard error, and both of these have simple
analytic solutions (at least when estimating using OLS). However, using an analytical test
statistic with proven desirable qualities is only one possible way to conduct inference. Another,
and indeed more flexible, class of inference is based on resampling methods. These methods,
which we have alluded to only very briefly when discussing differenceindifferences models,
include as a principal component the bootstrap, of Efron (1979). Here we will briefly discuss
the idea of a bootstrap estimate for a confidence interval, before showing how we can use a
bootstrapped test statistic to produce more efficient multiple hypothesis tests.

The idea of the bootstrap is one of analogy. Normally in hypothesis testing we are interested
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in the population. However, we only have a single sample from this population, which we
assume is representative. The logic behind the bootstrap is to treat the sample as analogous to
the true population. Then, by taking many resamples from our original sample, and in each case
calculating our parameter of interest, we can build an entire distribution of estimates, giving a
range for our point estimate. From the work of Efron (1979) we know that the bootstrap is an
asymptotically valid way to approximate the true distribution.

In order to understand a bit more we will introduce some basic notation. Imagine that we
have a sample of sizeN , and parameter of interest we will call β. If we estimate β in the original
sample this gives us β̂. Now, imagine that we are interested in creating a “new” dataset by taking
a resample from our original data. This resample simply chooses at random N observations
from our original dataset with replacement. As the sample is taken with replacement (that is
to say a single observation from the original sample may be included 0, 1, or multiple times
in the resample), this leads to a different dataset. Using this new resampled dataset we can
once again estimate β, leading to a different estimate β̂∗1. each resample is a different dataset.
Here we use ∗ to indicate that our estimate comes from a resample, and 1 to indicate that it
is the first resample. Finally, we conduct the above resampling procedure (always from the
original dataset)B− 1more times, resulting inB “new” datasets, and henceB estimates for β,
denoted β̂∗1, β̂∗2, . . . , β̂∗B. In order to find the 95% confidence interval for our original estimate
β̂ we simply order these bootstrap estimates β̂∗, and find the upper and lower bound using the
estimates at quantiles 2.5 and 97.5.

We can also use a bootstrap method to run hypothesis tests and calculate pvalues. Imag
ine, for example, that we wish to calculate the pvalue associated with the test that the above
parameter β = 0. Using each of the b ∈ B bootstrapped estimates we can generate a distri
bution of tstatistics, where we impose that the null is true. Consider the following calculation
corresponding to each of the β∗ terms:

t∗b =
β̂∗b − β̂∗

σ(β̂∗)
.

Here β̂∗ refers to the average β̂∗ among all B resamples, and σ(β̂∗) refers to the standard de
viation of these estimates. This then results in a distribution of tstatistics using the resampled
data which is what we would expect if the true β were equal to zero. All that remains for our
hypothesis test then is to compare our actual tvalue (from the true estimate β̂) with the distri
bution in which the null is imposed. This actual tstatistic is simply based on our estimate β̂,
which is standardised using the same standard deviation as above: t = β̂/σ(β̂∗). If the actual
tvalue, which we will call t, is much higher or much lower than those in the null distribution,
we will conclude that it is unlikely that the null hypothesis is true. What’s more, we can attach a
precise pvalue to this hypothesis test. All we need to do is ask “what percent of tstatistics from
the null distribution exceed the true tstatistic?” If this proportion is low, it is strong evidence
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against the null. This results in the following calculation of a pvalue, where for simplicity we
take the absolute value of the tstatistics given that we are interested in values which are located
in either extreme tail of the distribution. We denote this value as p∗ to signify that it comes from
the bootstrap calculation, and it is reasonably easy to show that 0 ≤ p∗ ≤ 1, with a lower value
of p∗ signifying greater evidence against the null. We would typically work with a value such
as α = 0.05 as a rejection criteria.

p∗ =
#{|t∗| ≥ |t|}+ 1

B + 1

RomanoWolf Stepdown Testing A final, and particularly efficient, means of fixing the
FWER is the RomanoWolf stepdown testing procedure, described inRomano andWolf (2005a,b).
This procedure is increasingly used in the economic literature, for example in Gertler et al.
(2014); Dobbie and Fryer (2015). This procedure is based on a bootstrap testing procedure
similar to that described above, however correcting for the fact that we are conducting multi
ple hypotheses at once. It is a step down testing procedure (similar to Holm (1979)), and so
considers one hypothesis at a time, starting with the most significant.

Consider the same S hypotheses considered above, ordered again from most to least signif
icant as H(1), H(2), . . . , H(S). For each of these hypotheses we will generate a null distribution
of teststatistics using the bootstrap method described above, and B replications. This gives a
series of resampling distributions t∗1, t∗2, . . . , t∗S where each of these is a vector of B values.

The RomanoWolf testing procedure is then based on using the information from all of these
resampling distributions to correct for the fact that multiple hypotheses are tested at once. For
the first hypothesis we construct a new null distribution which, for each of the B resamples
takes the maximum tvalue associated with any of t∗1, t∗2, . . . , t∗S . We then compare the t value
associated with H(1) to this null distribution, and reject the null hypothesis at α = 0.05 only
if this tvalue exceeds 95% of the tvalues in the null distribution. We then continue with the
second hypothesis, however now construct our null distribution using only the maximum of
t∗2, . . . , t

∗
S (ie we remove the null tdistribution associated with those variables already tested).

We then follow a similar rejection procedure as above. We complete the Romano Wolf test
procedure once we have tested all the hypotheses in this way, where at each stage we only
consider the t∗values coming from the hypotheses which have not yet been tested. Thus, at
each stage the rejection criteria becomes slightly less demanding, as was the case in Holm
(1979)’s procedure, but at the same time this procedure efficiently accounts for any type of
correlation among the variables tested.



108CHAPTER4. TESTING, TESTING:HYPOTHESIS TESTING INQUASIEXPERIMENTALDESIGNS

4.4.2 Controlling the FDR

Procedures to control for the false discovery rate came to the fore much later than those
to control the family wise error rate. Nonetheless, both FDR and FWER procedures are now
frequently employed. As discussed in sections above, altohugh control of the FDR allows for a
small proportion of type I errors, it brings with it greater power than that available in controlling
for the FWER. An extremely nice analysis of these methods in an applied context is provided
by Anderson (2008) as well as a particularly elegant discussion of the types of circumstances
in which we may prefer FWER or FDR corrections.6

The earliest suggestion of controlling for the expected proportion of falsely rejected hy
potheses (the FDR) comes from Benjamini and Hochberg (1995). They propose a simple
methodology, and prove that its application acts to control the FDR. They suggest the following
procedure, where as above we refer to S hypothesis tests: H(1), H(2), . . . , H(S), which we have
ordered from most to least significant: p(1) ≤ p(2) ≤ · · · ≤ p(S). Suppose that we define some
significance level for rejection (such as 0.05) which we will denote q. Then, let k be the largest
value of j for which:

p(j) ≤
j

S
q. (4.6)

This leads to the rejection rule to reject all H(j) such that j = 1, 2, . . . , k, and do not reject any
of the remaining hypotheses. It is important to note that this is actually a stepup rather than
stepdown procedure, as we start with the least significant hypothesis, and step up until we meet
the condition in equation 4.6.

More recent methods have shown how we can improve on this first generation FDR control
method (see for example the method proposed in Benjamini et al. (2006)). Nevertheless, these
methods still follow the basic stepup procedure described in Benjamini and Hochberg (1995).
A useful applied discussion of these various methods, as well as their implemention, can be
found in Newson (2010).

6This discussion, from p. 1487 of Anderson (2008) and related to assessing the impact of early childhood
intervention programs is reproduced here:

“FWER control limits the probability of making any type I error. It is thus well suited to cases in
which the cost of a false rejection is high. In this research, for instance, incorrectly concluding that
early interventions are effective could result in a largescale misallocation of teaching resources. In
exploratory analysis, we may be willing to tolerate some type I errors in exchange for greater power,
however. For example, the effects of early intervention on specific outcomes may be of interest,
and because overall conclusions about program efficacy will not be based on a single outcome, it
seems reasonable to accept a few type I errors in exchange for greater power.”
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4.5 Preregistering Trials

When working on an empirical research paper, a researcher generally faces many relatively
banal choices, but which require a decision in arriving to models. To give one simple example,
variables can be treated in levels or logs, and often both options may be reasonable. Provided
that such decisions are justified exante, it is generally perfectly fine to simply choose one or the
other. However, if output to statistical models is examined in order to justify the choice made,
this is problematic, as standard testing rates will break down. This is particularly concerning if
there are ‘ruleofthumb’ significance levels which researchers consider ‘important’ to advanc
ing a particular narrative. For example, the well known significance levels of α = 0.01, 0.05,
or 0.10 may seem to be tempting targets, which of course runs entirely counterintuitively to
the nature of seeking to test a hypothesis. There is evidence from the literature that such “data
snooping” procedures may occur. For example, the distribution below collated by Brodeur et al.
(2020) plots Zstatistics from over 20,000 hypothesis tests in nearly 1,000 papers in empirical
economics. There is evidence of important heaping of reported Zstatistics at points in the
probability distribution corresponding to ‘standard’ significance levels, particularly Z = 1.96.
Such a pattern would not be expected to be observed if model specifications were made without
seeing statistical results. This heaping is shown to be particularly accute in certain types of
empirical methods (for example IV and differenceindifference models).

Figure 4.4: Zstatistics from empirical economicpapers

Recently, there has been growing interest in the use of preregistered trials in the social
sciences, and in experimental economics in particular (Miguel et al., 2014). The idea of pre
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registering a trial is that prior to examining any data or running any analysis, the methodology
and variables used should be entirely prespecified, removing any concerns that specifications
are chosen expost to fit a particular interepretation. Multiple onlineregisters exist including
the AEA’s experimental registry, where researchers can fully prespecify their experimental
hypotheses as well as their identification strategy and the precise outcome variable to be exam
ined.

A number of suggested steps to follow when preregistering a trial (or writing a preanalysis
plan), are laid out in Christensen andMiguel (2016). They also provide a list of noteable studies
using such a plan, which are becoming much more frequent in recent literature. The use of a
preanalysis plan is particularly wellsuited to an experimental study or randomised control
trial in which all details can be worked out and defined before any data is collected. If writing
a preanalysis plan in economics, Christensen and Miguel (2016) is an excellent place to start.

Despite their growing use, a number of issues surrounding preanalysis plans are laid out in
Olken (2015). Among others, these plans may become ungainly, particularly when the design
of one test is conditional on the outcome of another. Also, the extension to a nonexperimental
setting is not necessarily trivial. While in an experimental setup there is a clear “before” period
in which the preanalysis plan can be written, with observational data this often is not the case.
Nevertheless, and indeed as pointed out by Olken (2015), there are multiple benefits of pre
analysis plans—beyond just increased confidence in results—implying that the process of pre
specifying and registering a trial may be a valuable process to follow in many settings.



Chapter 5

Beyond Average Treatment Effects...

Required Readings
Imbens and Wooldridge (2009): Sections 3.23.4
Angrist and Pischke (2009): Chapter 7

Suggested Readings
Dehejia et al. (2015)
Attanasio et al. (2012)
Deaton (2010)
Heckman (2010)

5.1 The Big Picture

The methods discussed so far in this lecture series, and the literature which draws on these
sorts of methods, focus very carefully on how to infer causality. Explicit questions on what
drives observed outcomes—receipt of treatment, or selection into treatment—are deeply em
bedded in this framework. We have encountered this focus throughout all these lectures, starting
from the Rubin Causal Model on the first day.

Nevertheless, it would be farfetched to suggest that our studies in economics and microe
conometrics could ever be reduced simply to questions on causality, and even more farfetched
to suggest that it could again be reduced only to those things that are directly manipulable by
the experimenter. In the first place, the type of questions which one can ask with these methods
is finite. There are many big picture questions that we would like to know about as empirical
economists that can never be manipulated in an RCT, and are tricky even when thinking in
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terms of the wider set of methods we have discussed in other lectures.

Secondly, these methods do not lay claim to being able to respond to a question without
context. When we estimate a treatment effect using these methods, it holds only in the context of
the reform examined (that is, it is internally valid), and what’s more, only when considering the
average person subject to treatment. When we know about schooling in Mexico, or microcredit
in Pakistan, or worms in Kenya, do we know anything about these problems in other places in
the world? In a strict econometric sense, no. The treatment effects literature (and particularly
RCTs), receive critique for having a lack of external validity, meaning that what we learn in one
context will not necessarily hold in another.1

There are many papers which debate the merits of reduced form work like that described
here, and more extensive econometric methods, including structural modelling. The suggested
reading by Deaton is a very good place to start. While we only provide a brief introduction
in these lectures, it is worth noting a couple of things in closing: firstly about methods which
increase the scope of these results, and secondly about if (and if so, how) these results tie into
the wider world of structual econometrics.

5.2 Heterogeneity and Quantile Treatment Effects

Firstly, we will consider how the heterogeneity of individuals can tie in with these methods.
In general, in our econometrics up to this point, we have been content to estimate an average
parameter—for example β̂ estimated by OLS, or some other type of average treatment effect—
however we have not thought too far beyond these average responses. At times, the average
effect of a reform may be truly what we would like to know. However other times, it certainly
won’t be. For example, consider a program targeted to schooling outcomes. If a large average
treatment effect is driven only by those with very high test scores, we may consider that the
program is actually not doing a good job in addresing problems in the true population of interest,
such as children at risk of not progressing, or learning key skills. Indeed, we may be particularly
interested with just a certain group of the population, such as those in the bottom half or bottom
quartile of schooling outcomes, if we are aiming to avoid particularly poor results. In any case,
and in general, there are certainly considerations of equality which remain hidden when an
average treatment effect is reported.

1It is interesting to think of the parallel between economics and the natural sciences in this case. When some
thing is demonstrated in a laboratory in the natural sciences, typically it is done so under standardised conditions
(such as “Standard Temperature and Conditions” (STC). In this sense, external validity is not important, as these
conditions can be replicated anywhere, and the validity of the result can then be proved. In development eco
nomics, there is no such thing as STC! The local conditions and institutions in one country, region, village etc., do
not exist in other places. As such, a positive result in one circumstance, while at least providing proof of concept,
tells us very little about what would actually happen were the same policy to be implmented in a different context.



5.2. HETEROGENEITY AND QUANTILE TREATMENT EFFECTS 113

5.2.1 An Introduction to Quantile Regressions

A simple way to unpack heterogeneity in a regression framework is by estimating a quantile
regression. The quantile regression allows for the calculation of the impact of some variable
(or variables) x on some dependent variable of interest y at different quantiles of the dependent
variable y. Thus, rather than estimate a single β capturing the impact of x on y, we can estimate
a series of βq, capturing the impact of x on y at percentile q of the variable y. These percentiles
may be themedian, or quartile 1 (the lowest 25% of the population), or any percentile of interest.
One important thing to note is that we are not referring to different percentiles of the independent
variables x, but rather examining how outcomes vary across the distribution of the dependent
variable. Belowwe provide an example where the dependent variable of interest is birth weight.
In this case, for example, a quantile regression of a baby’s birthweight (y) on the number of
cigarettes that a mother smokes during pregnancy (x) would provide a different estimate for
each quantile of birthweight, not for different quantiles of cigarette consumption.

In practice, quantile regression parameters are estimated for a particular percentile, which
we call q, and, as long as heterogeneity is present, will vary for each q. It is common for the
parameters to be displayed at a range of quantiles, for example as documented in the graphs in
Figure 5.1. The estimation procedure in quantile regression is via an absolute error loss function
(rather than a squared error loss function, as in OLS). As a result, quantile regression is less
sensitive to outliers than OLS. In particular, the quantile regression estimator β̂q for percentile
q minimizes the following loss function:

QN(βq) =
∑

i:yi≥x′
iβ

q|yi − x′
iβq|+

∑
i:yi<x′

iβ

(1− q)|yi − x′
iβq|.

Note that here we are ordering the dependent variable yi, and consider the observations above
the median in the lefthand term, and below the median in the right hand term. Also note that
we are “tilting” the optimization in favour of the lower or upper percentiles depending on the
value of q. If q is a high percentile, we will give more weight to the lefthand term, and so β̂q

will take more into account information on observations above the median, and vice versa. In
the special case of the median (q = 0.5), this regression simply collapses to the least absolute
deviation estimator. Additional details of this estimator can be found in Cameron and Trivedi
(2005, section 4.6) and Angrist and Pischke (2009, chapter 7).

Additionally, a brief introduction to the quantile regression can be found in Koenker and
Hallock (2001) who document an example using US data on birth weights. Below we replicate
their empirical example, however using more recent data on all birth weights in the USA in
2015. This is a quantile regression where the dependent variable is each baby’s birthweight,
and with 11 independent variables (plus a constant). The quantile regression estimates β̂q are
documented for each of the independent variables, and at each percentile of the distribution of
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birth weight. These are presented along with their standard errors (in grey), and the parameters
from a linear OLS regression (dashed lines). Note for example the interpretation of the variable
“smoker” (bottom left panel). While the mean impact of smoking on birthweight is around a
150 gram reduction, this impact is largest in the lowest birth weight quantiles, suggesting that
smoking is particularly damaging for babies which are already at a very low birthweight. While
we will not discuss the full range of coefficients, notice that there is no impediment to using
both continuous and discrete variables in these models.

5.2.2 Quantile Treatment Effects

We will begin by thinking about generalizing average treatment effects to treatment effects
at different points of the outcome distribution. This is very closely related to the quantile regres
sions discussed above, but in particular, cast in the treatment effect framework. As discussed
above, the idea of a quantile regression is to look at the estimated effect of some variable x

at different points of the y distribution. The Quantile Treatment effect (QTE) for quantile q is
the effect of the treatment evaluated at the quantile q (e.g. the 10th percentile, the median, the
90th percentile,…) of the distribution of the outcome variable. Let us denote by τq the QTE for
quantile q, so that we have:

yi = τqTi + ui

If the treatment is binary, just as the ATE was the difference in mean outcome between treat
ment and control, the QTE(q) is the difference between the quantiles q of the distribution of
outcome in treatment and control. Let us denote by FY1 and FY0 the distribution function of
outcomes in treatment and control respectively:

τq = F−1
Y1

(q)− F−1
Y0

(q).

It is worth noting briefly that an important difference between this and the ATE framework
is that QTE(q) will, in general, be different from the quantile of the differences in outcomes
between treatment and control. If we denote byFY1−Y0 the distribution function of the difference
in outcomes:

τq = F−1
Y1−Y0

(q)

In other terms “the quantile of differences is not the difference of the quantiles”. If you cast your
mind back to nonlinear regression models, this may remind you somewhat of the difference
between average marginal effects of a probit or logit, versus the marginal effect at the mean.
Graphically, what we are trying to capture with a quantile treatment effect at different parts of
the distribution is displayed in figure 5.2.

Let’s consider the case of an RCT with perfect compliance. In that case the treatment is



5.2. HETEROGENEITY AND QUANTILE TREATMENT EFFECTS 115

Figure 5.1: Quantile Regression and Birth Weight
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Figure 5.2: Quantile treatment effects
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exogenous with respect to potential outcomes, we can consistently estimate the QTE(q) by
estimating τq through quantile regressions of the form:

yi = τqTi + εi

Quantile regressions use information which we previously threw out of the estimation when
estimating the ATE with OLS at the start of this lecture series. The heterogeneity in treatment
responses was previously treated only as an issue of heteroscedasticity. For example, if we
assume that the treatment effect increases linearly with the outcome then:

yi = µ0 + (µ1 − µ0)Ti + (γTiei + ei)

So that OLS estimates were consistent but the variance of the error term εi = (γTiei + ei)

increased with treatment. The distributions displayed in figure 5.2 display behaviour of this
type. In this situation, our average tretment effect is hiding some important, and potentially
very policy relevant, heterogeneity!

5.2.3 ChangesinChanges

Athey and Imbens (2006) have proposed a way to use quintiles to implement a strategy close
to DiD. Let us assume that we observe two crosssections of the treatment group and control
group at two periods, one before (t) and one after the treatment (t+ 1).
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Figure 5.3: Change in Change
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They idea is to match at time t each quintile q in the treatment group with quintile q′ in the
control group with the same value of outcome, and then compare the change in outcomes for
quintile q to changes in outcomes for quintile q′ (see Figure 5.3).

Let us denote Fgt by the distribution functions of the outcome for group g (0 for control and
1 for treatment) at time t. The change in change estimator is equal to:

ATTCIC =
1

N1

∑
i∈G1

yit+1 − F−1
0t+1(F0t(F

−1
1t (F1t+1(yit+1))))

The change in change is the ATT under two conditions: monotonicity, i.e. treatment does not
change the rank and conditional independence (as for DiD methods).

Although the focus of Athey and Imbens (2006) is on developing a new method to estimate
average treatment effect, their method also allows to consider the effect of treatment at different
quintiles of the distribution of earnings:

τCIC
q = F−1

1t+1(q)− F−1
0t+1(F0t(F

−1
1t (q)))
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5.3 Treatment Effects and External Validity

These methods, while allowing us to examine heterogeneity within the reduced scope of
one particular program, still provide no guidance on whether a result in a particular context is
applicable in another location. Recent work is starting to think about these questions in a more
formal way.

One particular approach is suggested by Dehejia et al. (2015) who suggest an “external
validity function”, which asks how far an experiment run in a particular context may be from
the mean effect in all locations. They examine the estimated effect of an additional child on his
or her mother’s labour supply in many contexts. While we will not go into the technical details
here, if this is relevant for your work, I encourage you to consult the suggested reading.

5.4 Sorting

When we spoke about the LATE we first began to think about sorting. In the case of assign
ment to treatment and the LATE we allowed a certain type of sortig whereby individuals could
choose whether to comply with a randomly assigned treatment status. However, more gen
erally, sorting is a pervasive issue which we must deal with when considering economic and
econometric models. Logically, in most cases, individuals make decisions based on what they
perceive is best for them. Or in other words, when possible, individuals will “sort” themselves
based on their potential outcomes.

Perhaps the most well known sorting model in labour economics is the RoyModel. This is a
simple model where individuals choose their ‘treatment status’ based on their outcomes under
two scenarios. In an econometric sense, we can think of this as a decision made completely
endogenously to the system under study. Wewill begin this section by laying out the RoyModel
as a general framework to think about a broader class of sorting decisions, before turning to a
particular model of thinking about treatment effects under endogenous decisions and sorting:
the Marginal Treatment Effects framework.

5.4.1 The Roy Model

The classic Roy Model is laid out in an expositional paper (Roy, 1951) entitled “Some
Thoughts on the Distribution of Earnings”. The paper itself lays out all the details of the model
without formally writing it down, sketching a clear picture of selection into (two) occupations
based on the potential rewards which each person faces in each occupation. Specifically, the
paper speaks of a village where individuals decide whether to fish or hunt rabbits, though ab
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stractly the model applies to any cases where individuals seek to consider their wellbeing in
both states of a decision when deciding between two options. In this sense, it is clear how it
ties in with the “potential outcomes” framework we are using in this course: here individuals
will select into the “treatment status” which is most beneficial to them given their particular
payoff. To the degree that an econometrician does not observe the payoffs an individual per
ceives to both states of the world, their will be challenges in identifying casual effects. Here I
briefly layout out the Roy Model as a way to explicitly think about selection, before turning to
a more general setup which considers estimation and identification where individuals decide
upon their treatment status.

The Roy model lays out a simplified framework where each individual freely chooses to
fish or hunt rabbits (exclusively), and the market pays a price for fish denoted πF and a price
for rabbits denoted πR. Thus, an individual who catches Fi fish if they choose to fish or Ri

rabbits if they choose to hunt would receive a wage of:

WFi = πFFi (5.1)

WRi = πRRi. (5.2)

Assuming for simplicity there is no uncertainty in these quantities, an individual would choose
to fish if WFi > WRi. Roy (1951) states that hunting is easier, whereas fishing requires more
skill. This is quite a simple model, but can be extended in many ways (see for example a
summary in Heckman and Taber (2010))

Individuals have different skill levels, which is to say that there is heterogeneity in Fi and
Ri. Specifically, Roy (1951) assumes that the log of “skills” (the level of production of each
good) are jointly normally distributed:[

log(Fi)

log(Ri)

]
∼ N

([
µF

µR

]
,

[
σ2
F ρFR

ρFR σ2
R

])
. (5.3)

A key goal of the Roy model is understanding selfselection. Into which tasks will the most
efficient workers select based on this structure? Note that so far, we have not assumed any
particular type of correlation between skills in hunting and fishing (that is to say, we have not
assumed a sign for ρFR). To determine whether more efficient workers are selected into par
ticular tasks, say fishing, we need to determine whether E[log(Fi)|πFFi > πRRi] is greater
than E[log(Fi)], that is to say, whether the average salary of individuals who fish is above the
average salary of all potential individuals if they would fish.

It can be shown (see Heckman and Taber (2010, p. 222))2 that the value of this conditional

2We won’t go through the notation here, though if you would like to see how this is resolved, Chris Taber has
some slides laying this out quite extensively. These are available at: https://www.ssc.wisc.edu/~ctaber/
751/roy.pdf, slides 2229 are the most relevant for this calculation.

https://www.ssc.wisc.edu/~ctaber/751/roy.pdf
https://www.ssc.wisc.edu/~ctaber/751/roy.pdf


120 CHAPTER 5. BEYOND AVERAGE TREATMENT EFFECTS...

expectation can be written as:

E[log(Fi)|πFFi > πRRi] = µF +
(σ2

F − ρFR)

σ
λ

(
log(πF )− log(πR) + µF − µR

σ

)
, (5.4)

where σ2 is the variance of log(Fi/Ri), and λ(·) is the inverse Mills ratio, which is found in
cases where a truncated normal distribution is considered. The important thing to note here is
that this expectation is equal to the mean of log(Fi) (the average skill in the population), plus
a second term, which describes the nature of selection. Thus, if this second term is positive,
this implies more skilled individuals select into fishing, while if it is negative, lessskilled (in
fishing) individuals select into fishing. Note that the inverse Mills ratio is always positive, and
standard deviation σ must be positive. So the nature of selection depends entirely on the sign of
(σ2

F − ρFR). Note also that σ2 = (σ2
F − ρFR) + (σ2

R − ρFR) > 0, so one of the two terms must
be positive (and both can be positive), implying positive selection into at least one of fishing or
hunting. Based on all this, a number of general results can be summarised:

• If fishing is harder and there is a larger variance in fishing ability in the population σ2
F >

σ2
R which must imply positive selection into fishing.

• In the case of hunting (the lower variance occupation), the nature of selection depends on
the value of ρFR relative to σ2

R.

– If ρFR (hunting skill and fishing skill are negatively correlated), there will be posi
tive selection into hunting too

– If hunting and fishing skill are perfectly correlated, given that σ2
F > σ2

R, then ρFR

must be larger than σ2
R, and there will be negative selection into hunting

– For cases in between negative correlations and perfect positive correlations, either
case can arise.

This simplified model thus already gives some framework to think about selection and how
a population of individuals will behave if they are seeking to maximise payoffs among choices.
There are many extensions to these models, and applications where it is used as a basis for
estimation with real data (for example Taber and Vejlin (2020)). However, here we lay out the
Roy model as a precursor for thinking about heterogeneity, given its importance in thinking
about marginal treatment effects, and the value for particular individuals of selecting into one
or other case. In the case laid out here, certain individuals may have a much higher wage in one
of two occupations and hence have much to gain from choosing this, while others may have
reasonably similar wages in both occupations, and thus less to gain from their occupational
choice. This is something we turn to examine now.
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5.4.2 “Marginal Treatment Effects” and Other Relevant Quantities

The Marginal Treatment Effect (MTE) framework starts with a more flexible version of a
Roystyle model. Heckman and Vytlacil (2005), who formalize the marginal treatment effects
framework, refer to the generalized Roy model, which augments the above standard Roy model
with a component capturing the cost of receiving treatment. We now define Z as observables
cost of receiving treatment, such that an individual would select into treatment if their benefits
of treatment exceed the benefits of not electing to receive treatment, net of any costs. The
interest of this model is in allowing very flexibly for selection into treatment, and considering
which treatment effects can, and ideally should, be estimated. At its heart, the MTE framework
is about selection into treatment, and so begins with a consideration of treatment itself:

D∗ = µD(Z,X)− UD, D = 1 if D∗ ≥ 0, else D = 0 (5.5)

Note that this views selection into treatment as a latent variable model, similar to latent variables
underlying standard binary choice models such as the probit or logit. Underlying these terms,
are potential outcomes:

Y1 = µ1(X,U1) Y0 = µ0(X,U0)

and costs of receiving treatment
C = µc(Z) + UC .

Based on this, we can understand how an individual will make their choices – their D∗ will be
greater than or equal to 0, implying selection into treatment, if Y1 − Y0 − C ≥ 0. Thus, note
above in equation 5.5 that in the generalized Roy model setting, UD = U1 − U0 − UC , which
all refer to unobservable terms.

The use ofZ in relying to costs is not casual. In Heckman and Vytlacil (2005), Z is assumed
to affect the likelhood of opting into treatment, while also being independent of U1, U0 and UD.
Thus, these “cost of treatment” components are actually viewed as an instrumental variable.
This would be particularly clear if Z was a random assignment to treatment, and brings us back
to the setting described in section 3.1 when discussing IV and the LATE. Where Heckman and
Vytlacil (2005) seek to go considerably beyond LATE, however, is in formally modelling se
lection into treatment, and thinking about the resulting estimands. They define P (Z) as the
probability of receiving treatment given any particular vaue of Z, or P (Z) ≡ Pr(D = 1|Z).
This is, of course, just a propensity score, given that it relates the likelihood of receiving treat
ment with some observable characteristic(s).

Based on the above definitions,

UNDERCONSTRUCTION. THIS SECTIONWILLBEUPDATEDDURINGSEMESTER.



122 CHAPTER 5. BEYOND AVERAGE TREATMENT EFFECTS...



Bibliography

A. Abadie. Semiparametric instrumental variable estimation of treatment response models.
Journal of Econometrics, 113(2):231–263, 2003.

A. Abadie and J. Gardeazabal. The Economic Costs of Conflict: A Case Study of the Basque
Country. American Economic Review, 93(1):113–132, 2003.

A. Abadie, A. Diamond, and J. Hainmueller. Synthetic Control Methods for Comparative Case
Studies: Estimating the Effect of California’s Tobacco Control Program. Journal of the
American Statistical Association, 105(490):493–505, 2010.

D. Almond. Is the 1918 Influenza Pandemic Over? LongTerm Effects of In Utero Exposure
in the Post1940 U.S. Population. Journal of Political Economy, 114(4):672–712, 2006.

M. L. Anderson. Multiple Inference andGender Differences in the Effects of Early Intervention:
A Reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects. Journal
of the American Statistical Association, 103(484):1481–1495, 2008.

J. Angrist, V. Lavy, and A. Schlosser. Multiple Experiments for the Causal Link between the
Quantity and Quality of Children. Journal of Labor Economics, 28(4):773–824, October
2010.

J. D. Angrist and G. W. Imbens. Twostage least squares estimation of average causal effects
in models with variable treatment intensity. Journal of the American Statistical Association,
90(430):431–442, 1995. doi: 10.1080/01621459.1995.10476535.

J. D. Angrist and V. Lavy. Using Maimonides’ Rule to Estimate the Effect of Class Size on
Scholastic Achievement. The Quarterly Journal of Economics, 114(2):533–575, 1999.

J. D. Angrist and J.S. Pischke. Mostly Harmless Econometrics: An Empiricist’s Companion.
Princeton University Press, 2009.

O. Ashenfelter. Estimating the Effects of Training Programs on Earnings. Review of Economics
and Statistics, 60(1):47–57, 1978.

S. Athey and G. Imbens. Chapter 3  the econometrics of randomized experimentsa. In A. V.
Banerjee and E. Duflo, editors, Handbook of Field Experiments, volume 1 of Handbook of
Economic Field Experiments, pages 73 – 140. NorthHolland, 2017. doi: https://doi.org/10.
1016/bs.hefe.2016.10.003. URL http://www.sciencedirect.com/science/article/
pii/S2214658X16300174.

S. Athey and G.W. Imbens. Identification and Inference in Nonlinear DifferenceinDifferences
Models. Econometrica, 74(2):431–497, 2006.

123

http://www.sciencedirect.com/science/article/pii/S2214658X16300174
http://www.sciencedirect.com/science/article/pii/S2214658X16300174


124 BIBLIOGRAPHY

S. Athey and G. W. Imbens. Designbased Analysis in DifferenceInDifferences Settings with
Staggered Adoption. NBERWorking Papers 24963, National Bureau of Economic Research,
Inc, Aug. 2018. URL https://ideas.repec.org/p/nbr/nberwo/19305.html.

O. P. Attanasio, C. Meghir, and A. Santiago. Education choices in mexico: Using a structural
model and a randomized experiment to evaluate progresa. The Review of Economic Studies,
79(1):37–66, 2012.

S. Baird, J. H. Hicks, E. Miguel, and M. Kremer. Worms at Work: Longrun Impacts of a Child
Health Investment. Quarterly Journal of Economics, 131(4):1637–1680, Jul 2016.

A. V. Banerjee and E. Duflo. The Experimental Approach to Development Economics. Annual
Review of Economics, 1(1):151–178, 05 2009. URL https://ideas.repec.org/a/anr/
reveco/v1y2009p151-178.html.

V. Baranov, S. Bhalotra, P. Biroli, and J. Maselko. Maternal depression, women’s empow
erment, and parental investment: Evidence from a randomized controlled trial. Ameri
can Economic Review, 110(3):824–59, March 2020. doi: 10.1257/aer.20180511. URL
https://www.aeaweb.org/articles?id=10.1257/aer.20180511.

L. Beaman, E. Duflo, R. Pande, and P. Topalova. Female Leadership Raises Aspirations and
Educational Attainment for Girls: A Policy Experiment in India. Science, 335(6068):582–
586, 2012.

Y. Benjamini and Y. Hochberg. Controlling the False Discovery Rate: A Practical and Powerful
Approach toMultiple Testing. Journal of the Royal Statistical Society. Series B (Methodolog
ical), 57(1):289–300, 1995.

Y. Benjamini, A. M. Krieger, and D. Yekutieli. Adaptive linear stepup procedures that control
the false discovery rate. Biometrika, 93(3):491–507, 2006.

M. Bertrand, E. Duflo, and S. Mullainathan. How Much Should We Trust DifferencesIn
Differences Estimates? The Quarterly Journal of Economics, 119(1):249–275, 2004.

S. Bhalotra and D. Clarke. The Twin Instrument: Fertility and Human Capital Investment.
Journal of the European Economic Association, 12 2019a. ISSN 15424766. doi: 10.1093/
jeea/jvz058. URL https://doi.org/10.1093/jeea/jvz058. jvz058.

S. Bhalotra and D. Clarke. Twin birth and maternal condition. The Review of Economics and
Statistics, 101(5):853–864, 2019b.

S. Bhalotra, D. Clarke, J. F. Gomes, and A. Venkataramani. Maternal Mortality and Women’s
Political Participation. CEPR Discussion Papers 14339, C.E.P.R. Discussion Papers, Jan.
2020. URL https://ideas.repec.org/p/cpr/ceprdp/14339.html.

P. Bharadwaj, K. V. Løken, and C. Neilson. Early Life Health Interventions and Academic
Achievement. American Economic Review, 103(5):1862–1891, 2013.

H. S. Bloom. Accounting for NoShows in Experimental Evaluation Designs. Evaluation
Review, 8(2):225–246, 1984.

C. E. Bonferroni. Il calcolo delle assicurazioni su gruppi di teste. In Studi in Onore del Profes
sore Salvatore Ortu Carboni, pages 13–60. Rome, 1935.

https://ideas.repec.org/p/nbr/nberwo/19305.html
https://ideas.repec.org/a/anr/reveco/v1y2009p151-178.html
https://ideas.repec.org/a/anr/reveco/v1y2009p151-178.html
https://www.aeaweb.org/articles?id=10.1257/aer.20180511
https://doi.org/10.1093/jeea/jvz058
https://ideas.repec.org/p/cpr/ceprdp/14339.html


BIBLIOGRAPHY 125

K. Borusyak and X. Jaravel. Revisiting Event Study Designs, with an Application to the Esti
mation of the Marginal Propensity to Consume. mimeo, 2018.

A. Brodeur, N. Cook, and A. Heyes. Methods matter: phacking and publication bias in causal
analysis in economics. American Economic Review, 110(11):3634–60, November 2020. doi:
10.1257/aer.20190687. URL https://www.aeaweb.org/articles?id=10.1257/aer.
20190687.

F. Brollo and U. Troiano. What happens when a woman wins an election? Evidence from close
races in Brazil. Journal of Development Economics, 122(C):28–45, 2016.

B. Callaway and P. H. Sant’Anna. did: Treatment Effects with Multiple Periods and Groups.
Comprehensive R Archive Network, Feb. 2020. URL https://cran.r-project.org/
web/packages/did/index.html.

B. Callaway and P. H. Sant’Anna. Differenceindifferences with multiple time peri
ods. Journal of Econometrics, 2021. ISSN 03044076. doi: https://doi.org/10.1016/
j.jeconom.2020.12.001. URL https://www.sciencedirect.com/science/article/
pii/S0304407620303948.

S. Calonico, M. D. Cattaneo, and R. Titiunik. Robust Nonparametric Confidence Intervals for
RegressionDiscontinuity Designs. Econometrica, 82(6):2295–2326, 2014a.

S. Calonico, M. D. Cattaneo, and R. Titiunik. Robust datadriven inference in the regression
discontinuity design. The Stata Journal, 14(4):909–946, 2014b.

S. Calonico, M. D. Cattaneo, and R. Titiunik. Optimal DataDriven Regression Discontinuity
Plots. Journal of the American Statistical Association, 110(512):1753–1769, 2015. doi:
10.1080/01621459.2015.1017578.

A. C. Cameron and D. L. Miller. A practitioner’s guide to clusterrobust inference. The Journal
of Human Resources, 50(2):317–72, 2015.

A. C. Cameron and P. K. Trivedi. Microeconometrics: Methods and Applications. Cambridge
University Press, 2005.

A. C. Cameron, J. B. Gelbach, and D. L. Miller. BootstrapBased Improvements for Inference
with Clustered Errors. Review of Economics and Statistics, 90(3):414–427, 2008.

D. Card, D. S. Lee, Z. Pei, and A. Weber. Inference on Causal Effects in a Generalized Regres
sion Kink Design. Econometrica, 83(6):2453–2483, 2015.

P. Carneiro, J. J. Heckman, and E. Vytlacil. Evaluating marginal policy changes and the average
effect of treatment for individuals at the margin. Econometrica, 78(1):377–394, 2010.

G. Casella and R. L. Berger. Statistical Inference. Duxberry Thomson, 2 edition, 2002.

M. D. Cattaneo and R. Titiunik. Regression Discontinuity Designs. Annual Review of Eco
nomics, 14:1–48, 2022.

G. S. Christensen and E.Miguel. Transparency, reproducibility, and the credibility of economics
research. Working Paper 22989, National Bureau of Economic Research, December 2016.

https://www.aeaweb.org/articles?id=10.1257/aer.20190687
https://www.aeaweb.org/articles?id=10.1257/aer.20190687
https://cran.r-project.org/web/packages/did/index.html
https://cran.r-project.org/web/packages/did/index.html
https://www.sciencedirect.com/science/article/pii/S0304407620303948
https://www.sciencedirect.com/science/article/pii/S0304407620303948


126 BIBLIOGRAPHY

D. Clarke and K. Tapia Schythe. Implementing the panel event study. IZA Discussion Papers
13524, Institute of Labor Economics (IZA), 2020.

D. Clarke, S. Oreffice, and C. QuintanaDomeque. The Demand for Season of Birth. Working
Papers 2016032, Human Capital and Economic Opportunity Working Group, Dec. 2016.

I. ClotsFigueras. Are female leaders good for education? evidence from india. American
Economic Journal: Applied Economics, 4(1):212–44, 2012.

J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Academic Press, 1988.

T. G. Conley and C. R. Taber. Inference with “difference in differences” with a small number
of policy changes. The Review of Economics and Statistics, 93(1):113–125, 2011.

C. Davey, A.M. Aiken, R. J. Hayes, and J. R. Hargreaves. Reanalysis of health and educational
impacts of a schoolbased deworming programme in western Kenya: a statistical replication
of a cluster quasirandomized steppedwedge trial. International Journal of Epidemiology,
2015. doi: 10.1093/ije/dyv128.

C. de Chaisemartin and X. D’Haultfoeuille. Fuzzy DifferencesinDifferences. The Review of
Economic Studies, 85(2):999–1028, 08 2017. ISSN 00346527. doi: 10.1093/restud/rdx049.

C. de Chaisemartin and X. D’Haultfoeuille. Twoway fixed effects estimators with hetero
geneous treatment effects. American Economic Review, 110(9):2964–96, September 2020.
doi: 10.1257/aer.20181169. URL https://www.aeaweb.org/articles?id=10.1257/
aer.20181169.

C. de Chaisemartin, X. D’Haultfoeuille, and A. Deeb. TWOWAYFEWEIGHTS: Stata module
to estimate the weights and measure of robustness to treatment effect heterogeneity attached
to twoway fixed effects regressions. Statistical Software Components, Boston College De
partment of Economics, Feb. 2019a.

C. de Chaisemartin, X. D’Haultfoeuille, and Y. Guyonvarch. DID_MULTIPLEGT: Stata mod
ule to estimate sharp DifferenceinDifference designs with multiple groups and periods. Sta
tistical Software Components, Boston College Department of Economics, May 2019b.

A. Deaton. The Analysis of Household Surveys – AMicroeconometric Approach toDevelopment
Policy. The Johns Hopkins University Press, 1997.

A. Deaton. Instruments of development: Randomization in the tropics, and the search for the
elusive keys to economic development. Working Paper 14690, National Bureau of Economic
Research, January 2009.

A. Deaton. Instruments, randomization, and learning about development. Journal of Economic
Literature, 48(2):424–55, 2010.

A. Deaton. Randomization in the tropics revisited: a theme and eleven variations. Working
Paper 27600, National Bureau of Economic Research, July 2020.

R. Dehejia, C. PopEleches, and C. Samii. From local to global: External validity in a fertility
natural experiment. NBER Working Papers 21459, National Bureau of Economic Research,
Inc, 2015.

https://www.aeaweb.org/articles?id=10.1257/aer.20181169
https://www.aeaweb.org/articles?id=10.1257/aer.20181169


BIBLIOGRAPHY 127

R. H. Dehejia and S.Wahba. Propensity ScoreMatchingMethods For Nonexperimental Causal
Studies. The Review of Economics and Statistics, 84(1):151–161, February 2002.

M. Dell. Trafficking Networks and the Mexican Drug War. American Economic Review, 105
(6):1738–17792, 2015.

J. J. Diaz and S. Handa. An Assessment of Propensity Score Matching as a Nonexperimen
tal Impact Estimator: Evidence from Mexico’s PROGRESA Program. Journal of Human
Resources, XLI(2):319–345, 2006.

W. S. Dobbie and R. G. Fryer. The mediumterm impacts of highachieving charter schools.
Journal of Political Economy, 123(5):985–1037, 2015.

N. Doudchenko and G. W. Imbens. Balancing, Regression, DifferenceInDifferences and Syn
thetic Control Methods: A Synthesis. Working Paper 22791, National Bureau of Economic
Research, October 2016.

E. Duflo. Schooling and Labor Market Consequences of School Construction in Indonesia:
Evidence from an Unusual Policy Experiment. American Economic Review, 91(4):795–813,
September 2001.

E. Duflo, R. Glennerster, and M. Kremer. Chapter 61 using randomization in development
economics research: A toolkit. In T. P. Schultz and J. A. Strauss, editors, Handbook of
Development Economics, volume 4 of Handbook of Development Economics, pages 3895
– 3962. Elsevier, 2007. doi: https://doi.org/10.1016/S15734471(07)040612. URL http:
//www.sciencedirect.com/science/article/pii/S1573447107040612.

B. Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):
1–26, 1979.

R. A. Fisher. Statistical Methods for Research Workers. Oliver & Boyd, 1925.

R. A. Fisher. The Design of Experiments. Oliver & Boyd, 1935.

S. Freyaldenhoven, C. Hansen, and J. M. Shapiro. Preevent trends in the panel eventstudy
design. American Economic Review, 109(9):3307–38, September 2019. doi: 10.1257/aer.
20180609. URL http://www.aeaweb.org/articles?id=10.1257/aer.20180609.

T. Fujiwara and L. Wantchekon. Can informed public deliberation overcome clientelism? Ex
perimental evidence from Benin. American Economic Journal: Applied Economics, 5(1):
241–255, 2013.

P. Ganong and S. Jäger. A Permutation Test and Estimation Alternatives for the Regression Kink
Design. IZA Discussion Papers 8282, Institute for the Study of Labor (IZA), June 2014.

A. Gelman and G. Imbens. Why HighOrder Polynomials Should Not Be Used in Regression
Discontinuity Designs. Journal of Business & Economic Statistics, 37(3):447–456, 2019.
doi: 10.1080/07350015.2017.1366909.

A. Gelman and E. Loken. The garden of forking paths: Why multiple comparisons can be a
problem, even when there is no “fishing expedition” or “phacking” and the research hypoth
esis was posited ahead of time. Nov. 2013.

http://www.sciencedirect.com/science/article/pii/S1573447107040612
http://www.sciencedirect.com/science/article/pii/S1573447107040612
http://www.aeaweb.org/articles?id=10.1257/aer.20180609


128 BIBLIOGRAPHY

P. Gertler, J. Heckman, R. Pinto, A. Zanolini, C. Vermeersch, S. Walker, S. Chang, and
S. GranthamMcGregor. Labor market returns to an early childhood stimulation interven
tion in Jamaica. Science, 344(xxxx):998–1001, 2014.

D. O. Gilligan and J. Hoddinot. Is There Persistence in the Impact of Emergency Food Aid?
Evidence on Consumption, Food Security, and Assets in Ethiopia. American Journal of
Agricultural Economics, 89(2):225–242, 2007.

R. Glennerster and K. Takavarasha. Running Randomized Evaluations: A Practical Guide.
Princeton University Press, 2013.

A. GoodmanBacon. Differenceindifferences with variation in treatment timing. Jour
nal of Econometrics, 2021. ISSN 03044076. doi: https://doi.org/10.1016/j.
jeconom.2021.03.014. URL https://www.sciencedirect.com/science/article/
pii/S0304407621001445.

A. GoodmanBacon, T. Goldring, and A. Nichols. BACONDECOMP: Stata module to perform
a Bacon decomposition of differenceindifferences estimation. Statistical Software Compo
nents, Boston College Department of Economics, July 2019. URL https://ideas.repec.
org/c/boc/bocode/s458676.html.

C. W. J. Granger. Investigating Causal Relations by Econometric Models and CrossSpectral
Methods. Econometrica, 37(3):424–38, July 1969.

J. Heckman, S. Urzua, and E. Vytlacil. Understanding instrumental variables in models with
essential heterogeneity. Review of Economics and Statistics, 88(3):389–432, 2006.

J. J. Heckman. Building bridges between structural and program evaluation approaches to
evaluating policy. Journal of Economic Literature, 48(2):356–98, 2010.

J. J. Heckman and J. A. Smith. The Preprogramme Earnings Dip and the Determinants of Par
ticipation in a Social Programme. Implications for Simple Programme Evaluation Strategies.
The Economic Journal, 109(457):313–348, 1999.

J. J. Heckman and C. Taber. Roy model, pages 221–228. Palgrave Macmillan UK, London,
2010. ISBN 9780230280816. doi: 10.1057/9780230280816_27. URL https://doi.
org/10.1057/9780230280816_27.

J. J. Heckman and E. Vytlacil. Structural equations, treatment effects, and econometric policy
evaluation. Econometrica, 73(3):669–738, 2005. doi: 10.1111/j.14680262.2005.00594.x.

S. Heß. Randomization inference with stata: A guide and software. The Stata Journal, 17(3):
630–651, 2017.

J. H. Hicks, M. Kremer, and E. Miguel. Commentary: Deworming externalities and schooling
impacts in Kenya: a comment on Aiken et al. (2015) and Davey et al. (2015). International
Journal of Epidemiology, 2015. doi: 10.1093/ije/dyv129.

P. W. Holland. Statistics and causal inference. Journal of the American Statistical Association,
81(396):945–960, 1986.

S. Holm. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of
Statistics, 6(2):65–70, 1979.

https://www.sciencedirect.com/science/article/pii/S0304407621001445
https://www.sciencedirect.com/science/article/pii/S0304407621001445
https://ideas.repec.org/c/boc/bocode/s458676.html
https://ideas.repec.org/c/boc/bocode/s458676.html
https://doi.org/10.1057/9780230280816_27
https://doi.org/10.1057/9780230280816_27


BIBLIOGRAPHY 129

K. Imai and I. S. Kim. On the use of twoway fixed effects regressionmodels for causal inference
with panel data. Political Analysis, forthcoming(na):na–na, 2020.

G. Imbens and K. Kalyanaraman. Optimal Bandwidth Choice for the Regression Discontinuity
Estimator. Review of Economic Studies, 79(3):933–959, 2012.

G. W. Imbens. Better late than nothing: Some comments on deaton (2009) and heckman and
urzua (2009). Journal of Economic Literature, 48(2):399–423, 2010.

G.W. Imbens and J. D. Angrist. Identification and estimation of local average treatment effects.
Econometrica, 62(2):467–475, 1994.

G. W. Imbens and J. M. Wooldridge. Recent developments in the econometrics of program
evaluation. Journal of Economic Literature, 47(1):5–86, 2009.

R. Jensen. The Digital Provide: Information (Technology), Market Performance, and Welfare
in the South Indian Fisheries Sector*. The Quarterly Journal of Economics, 122(3):879–924,
08 2007.

R. Jensen. The (Perceived) Returns to Education and the Demand for Schooling. The Quarterly
Journal of Economics, 125(2):515–548, 2010.

A. KahnLang and K. Lang. The promise and pitfalls of differencesindifferences: Reflections
on 16 and pregnant and other applications. Journal of Business & Economic Statistics, 0(0):
1–14, 2019.

G. King and R. Nielsen. Why propensity scores should not be used for matching. Political
Analysis, 27(4):435–454, 2019. doi: 10.1017/pan.2019.11.

H. J. Kleven and M. Waseem. Using notches to uncover optimization frictions and structural
elasticities: Theory and evidence from pakistan. The Quarterly Journal of Economics, 128
(2):669–723, 2013.

R. Koenker and K. F. Hallock. Quantile Regression. Journal of Economic Perspective, 15(4):
143–156, 2001.

C. Landais. Assessing the Welfare Effects of Unemployment Benefits Using the Regression
Kink Design. American Economic Journal: Economic Policy, 7(4):243–78, November 2015.

E. E. Leamer. Specification Searches – Ad Hoc Inference with Nonexperimental Data. John
Wiley & Sons, Inc., 1978.

D. S. Lee and T. Lemieux. Regression discontinuity designs in economics. Journal of Economic
Literature, 48(2):281–355, 2010.

M.J. Lee. MicroEconometrics for Policy, Program, and Treatment Effects. Oxford University
Press, 2008.

E. L. Lehmann and J. P. Romano. Testing Statistical Hypotheses. Springer, 2005.

J. Ludwig and D. L. Miller. Does Head Start improve children’s life chances? Evidence from
a regression discontinuity design. The Quarterly Journal of Economics, 122(1):159–208,
2000.



130 BIBLIOGRAPHY

J. Mackinnon and M.Webb. Wild bootstrap inference for wildly different cluster sizes. Journal
of Applied Econometrics, 32:233–254, 2017.

J. Mackinnon and M. Webb. The wild bootstrap for few (treated) clusters. The Econometrics
Journal, 21:114–135, 11 2018. doi: 10.1111/ectj.12107.

J. McCrary. Manipulation of the running variable in the regression discontinuity design: A
density test. Journal of Econometrics, 142(2):698–714, February 2008.

E.Miguel andM. Kremer. Worms: Identifying Impacts on Education andHealth in the Presence
of Treatment Externalities. Econometrica, 72(1):159–217, 01 2004.

E. Miguel, C. Camerer, K. Casey, J. Cohen, K. M. Esterling, A. Gerber, R. Glennerster, D. P.
Green, M. Humphreys, G. Imbens, D. Laitin, T. Madon, L. Nelson, B. A. Nosek, M. Petersen,
R. Sedlmayr, J. P. Simmons, U. Simonsohn, and M. Van der Laan. Promoting Transparency
in Social Science Research. Science, 343(6166):30–31, Jan. 2014.

G. Miller. Women’s Suffrage, Political Responsiveness, and Child Survival in American His
tory. The Quarterly Journal of Economics, 123(3):1287–1327, 2008.

B. Moulton. Random Group Effects and the Precision of Regression Estimates. Journal of
Econometrics, 32(3):385–397, 1986.

R. Munroe. SIGNIFICANT (xkcd). https://xkcd.com/882/ Accessed 03 February 2017,
2010.

K. Muralidharan and N. Prakash. Cycling to School: Increasing Secondary School Enrollment
for Girls in India. NBER Working Papers 19305, National Bureau of Economic Research,
Inc, Aug. 2013. URL https://ideas.repec.org/p/nbr/nberwo/19305.html.

K. R. Murphy, B. Myors, and A. Wollach. Statistical Power Analysis. Routledge, 2014.

R. B. Newson. Frequentist qvalues for multipletest procedures. The Stata Journal, 10(4):
568–584, 2010.

B. A. Olken. Promises and Perils of Preanalysis Plans. Journal of Economic Perspectives, 29
(3):61–80, Summer 2015.

O. Ozier. The impact of secondary schooling in Kenya: A regression discontinuity analysis.
Unpublished, University of California at Berkeley, 2011.

Z. Pei, D. S. Lee, D. Card, and A. Weber. Local Polynomial Order in Regression Discontinuity
Designs. Journal of Business&Economic Statistics, 0(0):1–9, 2021. doi: 10.1080/07350015.
2021.1920961.

A. Rambachan and J. Roth. An honest approach to parallel trends, 2019.

J. P. Romano and M. Wolf. Exact and approximate stepdown methods for multiple hypothesis
testing. Journal of the American Statistical Association, 100(469):94–108, 2005a.

J. P. Romano and M. Wolf. Stepwise multiple testing as formalized data snooping. Economet
rica, 73(4):1237–1282, 2005b.

https://xkcd.com/882/
https://ideas.repec.org/p/nbr/nberwo/19305.html


BIBLIOGRAPHY 131

J. P. Romano, A. M. Shaikh, and M.Wolf. Hypothesis Testing in Econometrics. Annual Review
of Economics, 2(1):75–104, 2010.

D. Roodman. BOOTTEST: Stata module to provide fast execution of the wild bootstrap with
null imposed. Statistical Software Components, Boston College Department of Economics,
Dec. 2015. URL https://ideas.repec.org/c/boc/bocode/s458121.html.

D. Roodman, M. Ø. Nielsen, J. G. MacKinnon, and M. D. Webb. Fast and wild: Bootstrap
inference in stata using boottest. The Stata Journal, 19(1):4–60, 2019.

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41–55, 1983.

J. Roth. Pretest with caution: Eventstudy estimates after testing for parallel trends, 2019.

A. D. Roy. SOMETHOUGHTSONTHEDISTRIBUTIONOFEARNINGS. Oxford Economic
Papers, 3(2):135–146, 06 1951. doi: 10.1093/oxfordjournals.oep.a041827.

K. Schmidheiny and S. Siegloch. On event study designs and distributedlag models: Equiva
lence, generalization and practical implications. IZA Discussion Papers 12079, Institute of
Labor Economics (IZA), 2019.

M. Simonsen, L. Skipper, and N. Skipper. Price sensitivity of demand for prescription drugs:
Exploiting a regression kink design. Journal of Applied Econometrics, 31(2):320–337, 2016.

L. Sun and S. Abraham. Estimating dynamic treatment effects in event studies with het
erogeneous treatment effects. Journal of Econometrics, 2020. ISSN 03044076. doi:
https://doi.org/10.1016/j.jeconom.2020.09.006.

C. Taber and R. Vejlin. Estimation of a roy/search/compensating differential model of the labor
market. Econometrica, 88(3):1031–1069, 2020. doi: https://doi.org/10.3982/ECTA14441.

M. Urquiola and E. Verhoogen. Classsize caps, sorting, and the regressiondiscontinuity de
sign. American Economic Review, 99(1):179–215, 2009.

H. White. A HeteroskedasticityConsistent Covariance Matrix Estimator and a Direct Test for
Heteroskedasticity. Econometrica, 48(4):817–838, 1980.

J. M. Wooldridge. Econometric Analysis of Cross Section and Panel Data. The MIT Press,
Cambridge, Massachusetts, 2002.

https://ideas.repec.org/c/boc/bocode/s458121.html

	Econometrics in Parallel Universes
	An Introduction to Treatment Effects and the Potential Outcome Framework
	The Case for Parallel Universes
	The Rubin Causal Model
	Returning to Regressions
	Identification

	Constructing a Counterfactual with Observables
	Unconditional unconfoundedness: Comparison of Means
	Regressions
	Probability of Treatment, Propensity Score, and Matching
	Matching methods versus regression
	Some Points on Inference


	Counterfactuals from the Real World
	Introduction
	Difference-in-Differences and Two-Way Fixed Effect Models
	A Canonical Difference-in-Differences Set-up
	Two-Way Fixed Effect Models
	Inference in Diff-in-Diff
	Testing Diff-in-Diff Assumptions
	The Panel Event Study Model
	Other Extensions to Diff-in-Diff Methods

	Synthetic Control Methods

	Estimation with Local Manipulations
	Instruments and the LATE
	Homogeneous treatment effects with partial compliance: IV
	Instrumental variables estimates under heterogeneous treatment effects
	IV for noncompliance and heterogeneous effects: the LATE Theorem
	LATE and the compliant subpopulation
	Some Closing Points on the LATE

	Regression Discontinuity Designs
	An Introduction to RDDs
	Regression Discontinuity Designs
	Estimation and Inference with RD
	Assessing Unconfoundedness
	Regression Kink Designs


	Testing, Testing: Hypothesis Testing in Quasi-Experimental Designs
	Size and Power of a Test
	The Size of a Test
	The Power of a Test

	Hypothesis Testing with Large Sample Sizes
	Multiple Hypothesis Testing and Error Rates
	Multiple Hypothesis Testing Correction Methods
	Controlling the FWER
	Controlling the FDR

	Pre-registering Trials

	Beyond Average Treatment Effects...
	The Big Picture
	Heterogeneity and Quantile Treatment Effects
	An Introduction to Quantile Regressions
	Quantile Treatment Effects
	Changes-in-Changes

	Treatment Effects and External Validity
	Sorting
	The Roy Model
	``Marginal Treatment Effects'' and Other Relevant Quantities



