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Choice over time

Dynamic problems have two aspects: stocks and flows.
▶ The state variable summarises stocks
▶ The control variable is the variable being chosen (ie flows)

U =

T∑
t=1

βt−1u(ct), (1)

kt+1 = f(kt, ct). (2)



A Dynamic Household

Attach functional forms to (1) and (2):

u(ct) = ln(ct) kt+1 = kt − ct

Then …



A Dynamic Household

max
{ct}T

1

T∑
t=1

βt−1 ln(ct) s.t.
∑T

t=1 ct + kT+1 = k1 (3)

ct ≥ 0

kt ≥ 0.



Matlabbing it

We should be able to solve this problem by “direct attack” in Matlab

▶ A function to maximise
▶ A vector of maximands
▶ A vector of upper and lower bounds
▶ A(n) (in)equality constraint
▶ our old friend fmincon



1 function V = flowutility(T,Beta,C)
2 % flowutility(T,Beta,C) takes T periods of
3 % consumption of size C (a Tx1 vector), and
4 % calculates the total utility of consumption
5 % assuming an additively separable utility
6 % function and discount rate β.
7

8 t = [1:1:T];
9 V = Beta.^(t-1)*log(C);

10 V = -V;
11

12 return



Trying this out...

>> Beta = 0.9;
>> T = 10;
>> k1 = 100;
>> lb = eps*ones(10,1);
>> ub = 100*ones(10,1);
>> guess = 10*ones(10,1);
>> A = ones(1,10);
>> opt = optimset('TolFun', 1E-20, 'TolX', 1E-20, ...

'algorithm', 'sqp');
>> c = fmincon(@(C) flowutility(T,Beta,C), guess, ...

A, k1, [], [], lb, ub, [], opt);



Sensitivity

We have assumed a particular functional form, and values for input parameters

▶ Here we are imposing these, rather than recovering them
▶ Of course, we can re-solve the model based on alternative assumptions…

▶ Alternative values of β
▶ Alternative utility functions
▶ Alternative forms of the flow equation (see chapter)

▶ Let’s have a look at consump_graph.m
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Figure: Sensitivity of Consumption to Discount Rate



A Small Firm

In the readings online we have introduced a more realistic example. Consider a
small/family firm.

▶ This firm is both a producer and a consumer
▶ Unconsumed capital in period t can be used productively to generate additional

capital in t + 1

▶ Specifically, let’s imagine production is captured by a Cobb-Douglas production
function: kt+1 = θ(kt − ct)α

▶ Now there is a joint optimization problem over capital and consumption
▶ For the first time this requires non-linear inequality contraints…
▶ We will not look at this now, but I would encourage you to work through section

6.2.2 of the notes
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The Bellman Equation

Generally when people speak about ‘dynamic programming’ in economics, they refer to
the class of models solved using value function iteration.

▶ While solvers like fmincon are useful as a general outline, often we need more
flexible methods of attack

▶ This is where the Bellman equation comes in handy
▶ Essentially, breaks down the problem into sequentially much smaller problems



The Bellman Equation

V(kt) = max
ct

{u(ct) + βV(kt+1)} (4)



Iteration…

So, we can break this down into sub-problems:

V(kT) = max
cT

{u(cT) + βV(kT+1)}

V(kT−1) = max
cT−1

{u(cT−1) + βV(kT)}

V(kT−2) = max
cT−2

{u(cT−2) + βV(kT−1)}

... (5)
V(k2) = max

c2
{u(c2) + βV(k3)}

V(k1) = max
c1

{u(c1) + βV(k2)}



Iteration II

Now, all we need is a place to start…

V(kT+1) = 0 ∀ k (6)



Matlabbing it

We’ll solve Bellman equations numerically with Matlab

▶ Essentially, ‘brute force’ grid search
▶ Requires ‘gridding’ state variables (if not binary)
▶ Let’s check out backwardsInduc.m



An Example…

>> backwards_induc
Input Beta:0.9
Input time: 10
Input initial capital:100
Input fineness of grid:0.25



‘Memoization’

A brief final point here: this is computationally intense, but we can avoid a lot of
repeated heavy lifting

▶ ‘Memoization’ (aka computer programming in ‘Nature’)
▶ This is something that comes in very handy when simulating and solving these

problems
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Uncertainty

What we’ve seen so far is actually remarkably flexible.

▶ Generalises quite simply (in theory) to multiple state and control variables,
alternative functional forms

▶ Though in practice, curse of dimensionality
▶ Perhaps the only major thing we’re missing is stochastic elements
▶ Consider the case where the capital flow equation is now:

kt+1 = f(kt − ct, θ, εt+1) = θ(kt − ct)α + εt+1



The Bellman Equation

V(kt) = max
ct

{u(ct) + βE[V(kt+1)]} (7)



Decisions Under Uncertainty

So, now the decision must framed in terms of consumption now and expected
consumption in the future.

▶ In this case, the backwards iteration step is similar
▶ However, the iterating forwards to solve the model depends upon progressive

realisations of shocks
▶ If time: finiteStochastic.m, simulateStochastic.m



Simulations
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Figure: Simulated Consumption in a Stochastic Model



Summary

Part I (Finite Horizon):
▶ Finite horizon dynamic optimsation
▶ Bellman equations
▶ A little bit of model simulation

Part II (Infinite Horizon):
▶ Infinte horizons
▶ Using Bellman again
▶ Estimation!!
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Infinite Horizons

With finite horizon problems, we could use VT to seed solution

▶ We could iterate backwards from the terminal value function, and use this to
recursively solve models

▶ But, in many cases there won’t be some obvious end point…
▶ Fortunately we can still use Bellman’s technique if we can find some optimal

policy ‘forever’
▶ What’s more, the way we solve this is also iterative



Solving Infinite Problems…

V(k) = max
c

{u(c) + βV(k̃)} (8)

cf:
Vt(kt) = max

ct
{u(ct) + βVt+1(kt+1)}



Finding an Optimal Policy Forever

In (8), u(c) is quite clear, but calculating V(k) is the tricky part

▶ Value function is the same on both sides of the equation
▶ So, solving this involves finding a fixed point
▶ Bellman shows that quite conveniently, starting with any Vj(k), we will eventually

iterate onto our stationary V(k)



Trying One Out

max
{ct}∞t=1,{kt}∞t=2

∞∑
t=1

βt−1 ln(ct) subject to kt+1 = θkαt − ct

ct ≥ 0 (9)
kt ≥ 0.



Trying One Out

Fortunately this also gives an analytical solution!

V(k) = α

1− βα
ln k + F (10)

c(k) = θkα(1− βα). (11)

If you need convincing, check out appendix to notes…



Trying This Out in MATLAB

The function Iterate_VF.m provides a way to make a single iteration on a value
function…
▶ This is all numerical and ‘grid search’ methods, so is somewhat demanding
▶ The script ConvergeGraph.m runs 10 iterations of the search for a fixed point
▶ Clearly, 10 iterations is not enough to ‘converge’ to the fixed point (graph next

slide)
▶ The script IterateGraph.m finds ‘convergence’ (using a while loop)
▶ This is not true convergence. We ask MATLAB to ensure

||Vj+1(k)− Vj(k)|| < ε ∀ k



Examining a Number of Value Function Iterations

0 10 20 30 40 50 60 70 80 90 100
−20

−15

−10

−5

0

5

10

Amount of Capital

V
a

lu
e

 F
u

n
c
ti
o

n

Value Function Iteration

Figure: 10 Iterations of the Numerical Value Function



Iterating to the Value Function
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Figure: Convergence to the Numerical Value Function



The Solution

And then, with value function V(k) in hand it’s just a matter of determining the
optimal policy— the “policy function”—c(k).

>> aB = 0.65*0.9; theta = 1.2; alpha = 0.65;
>> plot(K,K(opt),K,aB*theta*K.^alpha, '--r', 'LineWidth', 3)
>> xlabel('Amount of Capital', 'FontSize', 12)
>> ylabel('Optimal k_{t+1}', 'FontSize', 12)
>> title('Policy Function for Capital Consumption', 'FontSize', 14)



The Solution
And then, with value function V(k) in hand it’s just a matter of determining the
optimal policy— the “policy function”—c(k).
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The Howard Improvement Algorithm

Value function iteration can be quite slow and computationally intensive

▶ There are a number of ways to speed up these problems, including ‘policy function
iteration’

▶ Our value function iteration takes between 66-135 iterations depending upon ε

▶ In policy function iteration we follow each proposed solution forever, rather than
just for one period



The Algorithm

1. Based upon Vj, determine optimal consumption for each k, giving a proposed
‘policy function’, cj(k)

2. Calculate the payoff associated with this policy function, u(cj(k))
3. Calculate the value of following this policy function forever, Vj+1

4. If ||Vj+1 − Vj|| < ε stop, or else return to step (i) for another iteration



Remaining Bottlenecks

In step (3):

Vj = u(cj(k)) + βQjVj

⇒ Vj = (I − βQj)
−1u(cj(k)), (12)



Policy Function Iteration
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Changing Viewpoints Entirely…

Forward versus Inverse Problems



Generalised Method of Moments

Linear regression one more time…

Population moments:
E[Xε] = E[X(y − Xβ)] = 0. (13)

And by analogy:

m =
1

N

[ N∑
i=1

Xi(yi − Xiβ)

]
= 0. (14)



Generalised Method of Moments with Linear Regression

We will return one more time to the auto.csv example as a ‘sanity check’ on GMM
coding.
▶ The idea in GMM is to drive the weighted quadratic distance mWm′ to as close

as zero as possible
▶ For consistency, W needs just be semi-definite-positive
▶ Let’s have a look at objective.m for moments in this case



Solving the System

>> DataIn = dlmread('auto.csv');
>> X = [ones(74,1) DataIn(:,2:3)];
>> y = DataIn(:,1);
>> [beta,Q] = fminsearch(@(B) objective(B,y,X),[10,0,0]', ...

optimset('TolX',1e-9));
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Estimating Dynamic Models

So, going from moments to Matlab isn’t too difficult…

▶ The challenge is in knowing which moments to fit!
▶ Let’s return to the example from dynamic setting with stochastic elements
▶ Our moments can be based on E[εt] = 0.



Stochastic Dynamic Model

Remember:

max
{ct}T

t=1

T∑
t=1

βt−1u(ct) subject to kt+1 = f(kt, ct) + εt+1. (15)



Moments

E[kt+1 − f(kt, ct)] = 0 (16)

E
[

u′(ct)

βu′(ct+1)
− f′(kt)

]
= 0. (17)



Moments II

E[kt+1 − θ(kt − ct)
α] = 0 (18)

E
[

ct+1

βct
− αθ(kt − ct)

α−1

]
= 0. (19)



Estimation

We have set-up these moments in dynamicMoments.m. This is a just-identified system
(for now). Let’s estimate the parameters α and θ based on our simulated example
from the end of Finite Horizon estimation:

>> finiteStochastic;
>> simulateStochastic;
>> opt = optimset('TolFun', 1E-20, 'TolX', 1E-20);
>> [Omega, Q] = fminunc(@(p) dynamicMoments(con(:,4),con(:,5),...

kap(:,4),kap(:,5),p),[1, 1], opt);
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