
Classes 2-3: “Entering the Matrix Laboratory & Optimization”

Damian Clarke

January 31, 2020

Research Methods II
MRes. in Economics



Today’s Plan

The command line

Functions

Optimisation

Simulating model solutions



Our approach…

“It can scarcely be denied that the supreme goal of
all theory is to make the irreducible basic elements
as simple and as few as possible without having to
surrender the adequate representation of a single
datum of experience.”

Einstein



Outline

1. The command line

2. Functions

3. Optimisation

4. Simulating model solutions



Outline

1. The command line

2. Functions

3. Optimisation

4. Simulating model solutions



>> 1 + 1
ans =

2



>> x = [1, 2; 3, 4; 5, 6]
x =

1 2
3 4
5 6

>> 2*x
ans =

2 4
6 8
10 12



>> who
>> whos



. sysuse auto
(1978 Automobile Data)
. reg mpg price weight, noheader
. outsheet mpg price weight using auto.csv, ///

nonames comma





>> DataIn = dlmread('auto.csv');
>> X = DataIn(:, 2:3);
>> size(X)
ans =

74 2

>> X = [X, ones(74,1)];
>> y = DataIn(:,1);



>> XX=X'*X;
>> Xy=X'*y;
>> beta=inv(XX)*Xy



We have used Matlab to recreate Stata’s point estimates in a regression function.
Can you now generate the same standard errors?



Outline

1. The command line

2. Functions

3. Optimisation

4. Simulating model solutions



Outline

1. The command line

2. Functions

3. Optimisation

4. Simulating model solutions



function y = doubleit(x)

y = 2 * x;

return



Challenge: Write a function that (i) accepts y and X, and (ii) returns β̂ and its
standard error.



Challenge: Write a function to calculate:

u(x1, x2) = x1/21 · x1/22



Suppose that, for some reason, we want to find utility for x1 = 5 and x2 ∈ {1, . . . , 10}…

x1 = [1:10]';
x2 = 5;



Outline

1. The command line

2. Functions

3. Optimisation

4. Simulating model solutions



Outline

1. The command line

2. Functions

3. Optimisation

4. Simulating model solutions



Log Likelihood Function for the Linear Model with Normal Errors

Suppose that we have:

yi = β · xi + εi

εi | xi ∼ N (0, σ2)

L(β, σ2; y | x)

= −
(

N
2

)
ln 2π −

(
N
2

)
lnσ2 −

(
1

2σ2

)
(y − βx)′(y − βx)

Write a function to calculate L(β, σ2; y | x).



help fmincon



minx∈Rkf(x)

subject to



minx∈Rkf(x)

subject to

lb ≤ x ≤ ub



minx∈Rkf(x)

subject to

A · x = b



minx∈Rkf(x)

subject to

C · x ≤ d



minx∈Rkf(x)

subject to

g(x) = 0



minx∈Rkf(x)

subject to

h(x) ≤ 0



minx∈Rkf(x)

subject to

lb ≤ x ≤ ub
A · x = b
C · x ≤ d
g(x) = 0

h(x) ≤ 0



Adding More Arguments in fmincon…

>> lb = [-1000, -1000, -1000, 0];
>> ub = [1000, 1000, 1000, 100];
>> theta0 = [0, 0, 0, 1];
>> opt = optimset('TolFun',1E-20,'TolX',1E-20,'MaxFunEvals',1000);

>> fmincon(@(theta)normalML(theta,y,X), theta0, [], ...
[], [], [], lb, ub, [], opt);



Adding More Arguments in fmincon…

>> opt = optimset('TolFun',1E-20,'TolX',1E-20,'MaxFunEvals',1000, ...
'PlotFcns','optimplotfval');

>> fmincon(@(theta)normalML(theta,y,X), theta0, [], ...
[], [], [], lb, ub, [], opt);



Outline

1. The command line

2. Functions

3. Optimisation

4. Simulating model solutions



Outline

1. The command line

2. Functions

3. Optimisation

4. Simulating model solutions



Loops and Conditional Statements in MATLAB
There are a number of general programming constructs which may be of use for us in
MATLAB. Loops let you repeat tasks for a predetermined series of values.

1. For Loops: Repeat a task for each value listed. Can take a number of forms:

1 for i=1:10
2 2*i
3 end

for i=2:2:10
2*i

end

for i=[1,3,5,9]
2*i

end
▶ Here for and end are obligatory, the counter variable (i here) can be called

anything
▶ Remember that MATLAB is built for vectors/matrices, so where possible, prefer

vectorized code rather than loops
▶ MATLAB has an amazingly simple parfor loop which is exactly the same, but

can speed up work considerably where tasks are “embarrassingly parallel”



Loops and Conditional Statements in MATLAB
There are a number of general programming constructs which may be of use for us in
MATLAB. Loops let you repeat tasks for a predetermined series of values.

2. While Loops: Repeat a task as long as some condition is still met.

1 i = 0
2 while i<10
3 i = i+1
4 end

▶ Here while and end are obligatory, the counter variable (i here) can be called
anything

▶ Must be careful that logic makes sense and avoid infinite loops. If caught in a
loop, we can force a break holding down ctrl+c.



Loops and Conditional Statements in MATLAB
There are a number of general programming constructs which may be of use for us in
MATLAB. Conditional statements can be handled using if/else.

3. if, elseif, else: Differentially execute statements depending on conditions. For
example:

1 t = 1.96;
2 df = 1000;
3 if t>0
4 p = 2*(1-tcdf(t,df))
5 elseif t<=0
6 p = 2*tcdf(t,df)
7 else
8 p = NaN
9 end



Activity 1: Simulating Consumption

maxx1,x2x1/21 · x1/22 subject to I = p1x1 + p2x2
p1 ∼ U(100, 150)



Activity 2: Bootstrap!
Challenge: Replicate the following in MATLAB:

bootstrap, reps(10000): reg mpg price weight, noheader

Hint:

>> s = [101, 102, 103, 104, 105]
s =

101 102 103 104 105

>> s([1, 1, 1, 4])
ans =

101 101 101 104


	The command line
	

	
	Functions
	

	
	Optimisation
	

	
	Simulating model solutions
	


