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Introduction

Brian: Look, you’ve got it all wrong! You don’t need to follow me.

You don’t need to follow anybody! You’ve got to think for your-

selves! You’re all individuals!

Crowd: Yes! We’re all individuals!

Brian: You’re all different!

Crowd: Yes, we are all different!

Monty Python, “The Life of Brian”

Two things are true about the seven billion people on this planet. First, no two

of us are the same. Second, we all respond — in more or less sophisticated ways

— to the incentives that we face. These two characteristics — heterogeneity

and agency — are part of what it means to be human. They also present a fun-

damental challenge for us as economists: ideally, we should build and estimate

models that treat people as responding to incentives, and that allow different

people to face different circumstances with different preferences. This book is

designed as a practical guide for theory-based empirical analysis in economics.

In short, it is about fitting models to data while respecting the heterogeneity

and the agency of the people whose behaviour we study.

At its core, this is what economics is about: fitting models to data. Sometimes,
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the data might simply be casual observations of the world: as economists, we

might develop ‘stylised facts’ about the way that people behave, and try to build

new models to explain what we see. Other times, we use aggregate figures, on

concepts like GDP and inflation. And sometimes, we use data that has been

collected from individuals: individual households, individual firms, individual

workers, and so on. This is what we term ‘microdata’ — and that’s what we

will focus on in this book. In sum, this is a book about fitting microeconomic

models to microdata, to improve our understanding of human behaviour.

Matlab is not the central plot of this story — though it is certainly a lead

character. Our goal in this book is not, in any general sense, to teach Matlab.

There are plenty of good books available to do that.1 Rather, our goal is to

discuss a series of standard problems in applied microeconometrics, and show

how Matlab can be used to tackle each one. Of course, it is quite unlikely that

any of the specific models we study will fit perfectly any particular empirical

problem that you face — but that, in a sense, is exactly the point. There are

many excellent textbooks that cover standard microeconometric methods, and

several excellent software packages for implementing those methods — often

requiring just a single line of code for any given estimator.2 Of course, all of

these methods can be implemented in Matlab, but this is not where Matlab’s

comparative advantage lies.

Rather, the beauty of Matlab is its extraordinary flexibility. Matlab opens

entire classes of new models — and, therefore, new ideas — that standard

econometrics packages do not allow. Of course, when it comes to econometric

algorithms, there will always be an important role for pre-bottled varieties off

the shelf. But in this book, we will brew our own. . .

1 For example, you could see Hahn and Valentine’s Essential Matlab for Engineers and Sci-
entists’.

2 Without loss of generality, think of (i) Cameron and Trivedi (2005) and (ii) Stata. . .
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Chapter 1

Entering the ‘Matrix

Laboratory’

1.1 Introduction

Let’s start at the very beginning,

A very good place to start.

Hammerstein, “The Sound of Music”

Matlab is a computer language for doing maths. Its name is short for ‘matrix

laboratory’, and its purpose is simple: to provide a very powerful and very

flexible way of solving mathematical problems. In this chapter, we will run

a series of exercises to illustrate the simplicity with which Matlab handles

matrices. This will provide a foundation for more complicated concepts and

structures that we will cover later.

The simplest way to interact with Matlab is through the ‘command line’, and

this is where we will begin. The command line can operate like a calculator.
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We can see this by a none-too-complicated calculation:

>> 1 + 1

ans =

2

We can use the command line to create matrix variables to store our results.

Let’s start with a simple variable, y:

>> y = 1 + 1

y =

2

As its name suggests, Matlab is designed to deal with matrices very simply and

effectively; in Matlab, we can enter any variable as a matrix, simply by using

commas to separate columns and semi-colons to separate rows. For example,

let’s create a simple 3×2 matrix (which we will call ‘x’), and then multiply that

matrix by two:

>> x = [1, 2; 3, 4; 5, 6]

x =

1 2

3 4

5 6

>> 2*x

ans =

2 4

6 8

10 12

We can check which matrices are stored in memory by using the commands who

(for a short summary) and whos (for a longer summary):
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>> who

Your variables are:

ans x y

>> whos

Name Size Bytes Class Attributes

ans 3x2 48 double

x 3x2 48 double

y 1x1 8 double

Matlab reports that we have three matrices in memory: ans, x and y. We

should not be surprised to see x and y in memory; we just created these matrices,

and we can check their contents simply by entering the matrix names at the

command line:

>> x

x =

1 2

3 4

5 6

>> y

y =

2

The matrix ans may be more confusing. This matrix stores Matlab’s most

recent answer that has not been stored in any other matrix. If we enter ans

at the command line, we will ask Matlab to recall its response to our earlier

expression ‘2*x’:

>> ans

ans =

2 4

6 8

10 12
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Notice that if we enter another expression that is not assigned to any other

matrix, Matab will use ans to store this new expression:

>> 5 * 5

ans =

25

>> ans

ans =

25

Matlab has a very large range of mathematical operators. But our goal here

is not to provide any comprehensive discussion of these. Matlab provides

excellent help files (to say nothing of a large range of online resources), and we

don’t want to use this book to describe in detail what is available elsewhere.

For example, to learn about Matlab’s arithmetic operators, a researcher could

simply search online to find the relevant help page. To learn the syntax of

a particular command, we could use Matlab’s extensive help documentation

from the command line:

>> help ones

Instead of discussing an ungainly list of commands and operations at this point,

we will explore different techniques as they become relevant for our analysis of

various microeconometric models. And so we begin — with an illustration of

the most popular microeconometric technique of them all. . .

1.2 Running an OLS regression

A simple way to become familiar with the basic workings of an econometric

program is to run an Ordinary Least Squares regression. In some ways, this is

the “Hello World!” of the applied researcher. “Hello World!” is the test program

which many computer programmers run when they first learn a language —
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to discover its basic syntax, and to ensure that it is running correctly. Such

programs simply print the words “Hello World!” and then terminate.1 While

the OLS regression requires a few more lines than printing a simple statement,

it will allow us to work with the basic building blocks that we have already

introduced.

Almost every applied research is familiar with Stata, and almost everyone who

is familiar with Stata has, at some point or another, come across the auto.dta

dataset. This is a dataset included by default when Stata is installed, and

contains data on a series of models of cars in 1978. We will briefly2 ask that you

open Stata and, using the auto dataset, run a regression of mileage per gallon

upon the car’s weight and price. We will denote mileage per gallon by the N×1

vector y, and will use the N×3 vector X to stack values of (i) price, (ii) weight,

and (iii) the number 1. Our OLS model is, of course:

y = Xβ + ε, (1.1)

where β is a 3 × 1 vector of parameters. We denote the OLS estimate of β as

β̂; we can find β̂ straightforwardly in Stata. . .

. sysuse auto

(1978 Automobile Data)

. reg mpg price weight, noheader

------------------------------------------------------------------------------

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

price | -.0000935 .0001627 -0.57 0.567 -.000418 .0002309

weight | -.0058175 .0006175 -9.42 0.000 -.0070489 -.0045862

_cons | 39.43966 1.621563 24.32 0.000 36.20635 42.67296

------------------------------------------------------------------------------

Let’s now write these three variables to the file auto.csv:

1 In Matlab, such a program would be quite simple, containing just disp(‘Hello World!’).
2 And apologetically, for any readers expecting that this book would be based entirely on
Matlab. . .
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. outsheet mpg price weight using auto.csv, nonames comma

To run the same regression in Matlab, we first need to import the data in

auto.csv. Before being able to import this data, we must ensure that our

current working directory contains the auto file. In order to move to this file,

we use the commands pwd (print working directory), cd (change directory) and

ls (list the contents of the current directory). After choosing the correct working

directory, we can import using dlmread:3

>> DataIn = dlmread('auto.csv');
>> X = DataIn(:, 2:3);

>> size(X)

ans =

74 2

>> X = [X, ones(74,1)];

>> y = DataIn(:,1);

The above block of code involves various new commands, so ensure that you

are able to run each command without problems in your Matlab window. Try

running each command without the semi-colon at the end of the line; this will

allow you to see the full output each time. The most important command is

dlmread, which allows us to read-in the data from our file auto.csv. Here we

store the entire dataset as a matrix named DataIn. Remember that if we are

interested in ensuring that auto.dta has imported correctly, we could use the

command whos(’DataIn’) to see the details.

Here we start to see how Matlab is structured around matrices. Rather than

storing data as a series of scalar variables that can be viewed in a browser, we

3 We encourage you to type all code displayed above in to your Matlab window manually.
If you copy and paste the above code directly, you may find that you have trouble with
the single quote operators around ‘auto.csv’. In reality, what Matlab requires is a straight
apostrophe (which looks like this: ') around the file name. If you enter the typical single
quote operators (which look like this: ‘’) you may find that Matlab will not allow you to
move on to the next line at the command prompt. If this happens, you can exit a given line

by pressing the control and c keys in unison.
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have stored our data as 74×3 matrix, which then must be manipulated if we are

interested in working with a matrix of independent variables and a vector for the

dependent variable mpg. This is what we do in the remaining lines of the above

block of code: first we extract our 74×2 matrix X and add a vector of ones, and

then we create the vector y. It is worth noting here that the notation DataIn(:,

1) implies that we take data from every single row (‘:’) of column 1 in matrix

DataIn. This code is also useful in illustrating precisely how as microeconomists

we are likely to deal with matrices in Matlab. Whilst the previous section of

this chapter has suggested that we can enter matrices by hand at the command

line (parsing with commas and semi-colons), it is unlikely that this will be a

frequent exercise. Generally we will either read in data directly as a matrix (as

we have done here), or will use Matlab’s matrix-based operations to simulate

data from economic models.

Now that we have two matrices (X and y) that contain the relevant data from

Stata’s auto dataset, we can run our regression. This requires little more than

introductory econometrics, namely the formula:

β̂ = (X ′X)−1(X ′y). (1.2)

Matlab’s syntax follows equation 1.2 quite closely. The only specialised func-

tion that we require is inv, which allows us to invert our X ′X matrix:

>> XX=X'*X;
>> Xy=X'*y;
>> beta=inv(XX)*Xy

beta =

-0.0001

-0.0058

39.4397

Here we have calculated our coefficient matrix beta. You will notice that our
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result is equal to those coefficients which we calculated earlier in Stata.4 We

may also be interested in ensuring that beta is correct to more than four decimal

places. We can do this by changing Matlab’s output format to the long format,

(>> format long) which displays up to 15 digits for ‘double’ variables.5 Try

changing the format and then printing out beta. How does this compare to

what we did earlier in Stata? (To change back to the traditional output format,

just enter format once again.)

For those of you interested in jumping ahead at this point, we refer you to

exercise (a) at the end of this chapter. This exercise provides a chance for you

to ‘get your hands dirty’ with some coding of your own. . .

1.3 The beauty of functions

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

. . . Readability counts. . .

Tim Peters, The Zen of Python

So far, our analysis has simply involved typing instructions into Matlab’s com-

mand line. This is effective, but not very efficient. What we need is a method

of saving commands so that we can run them later — and, if necessary, run

them many times, with different data, different parameters, and different op-

tions. In Matlab, we can do this with an ‘M-file’. We enter M-files through

Matlab’s Editor window, which we can access by typing edit at the command

line. M-files are to Matlab what do-files are to Stata.

4 Note that there is nothing (except perhaps a desire for clear exposition) that stops us from
calculating β in a single step. This would look like: beta=inv(X’*X)*X’*y, or alternatively
using the functionality of Matlab’s backslash (mldivide): beta = (X’*X)\(X’*y).

5 We resist the temptation to dive into a tangential discussion about the different precision
with which Matlab can store numbers. You can look this up by searching for concepts like
‘double’ and ‘single’.
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The most useful application of an M-file is to define a function.6 In Matlab, a

function is a special type of program. Functions are special for three reasons:

(i) Functions can accept inputs.

(ii) Functions can return outputs.

(iii) Each function is self-contained ; this means that each function can access

only those variables that are passed to it as an input, and can store vari-

ables only through returning them as outputs.7

1.4 A function for OLS regressions

The easiest way to understand functions in Matlab is through an example. We

will return to the OLS regression that we ran earlier.8 A regression is a perfect

candidate for a function; each OLS regression is computationally equivalent,

however the inputs and outputs for each regression will vary depending upon

the name of the X and y variables that we are interested in analysing. In this

way, we may be interested in permanently having a function available that we

can call to calculate regression results. This is useful to save time when typing

in commands at the command line, and to limit careless mistakes from typing

in the calculation of β many times.

Here is an example of a function that we have written, called regress. You

should be able to open this file in the Matlab editor by opening the file

regress.m.

6 We can also use an M-file to define a script, but we will not spend much time discussing
scripts.

7 Strictly speaking, a function could save a variable to a file on the disk — but this is an
unusual exception to the rule, and not one that we will often want to use.

8 OLS is a useful illustration of Matlab’s basic concepts and basic functionality. But we will
leave these sorts of standard econometric applications after this chapter. In many respects,
it is much easier to implement standard estimators in Stata — and, if you would prefer to use
Matlab, there is an extensive set of functions already available through the Econometrics
Toolbox.
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function [beta, se] = regress(y,X)

% regress(y, X) runs an OLS regression of the n*k matrix

% of k independent variables, on the dependent variable y

% (an n*1 vector). regress returns a parameter vector of

% coefficients called beta and se.

%*** (1) Calculate the coefficients ***

beta = (X’*X)\(X’*y);

%*** (2) Calculate the standard errors ***

yhat = X*beta;

u = yhat - y;

N = length(y);

K = size(X, 2);

sigma = sum(u.*u)/(N-K);

v_mat = sigma * inv(X’*X); % Covariance matrix

se = diag(sqrt(v_mat)); % Standard errors

return

There are a number of things worth highlighting here, either because they are

required for the code to run, or because they are good practice when writing

functions.

(i) The first line of the function tells Matlab (a) the name of the function

(regress), the inputs to the function (y and X), and (b) the outputs from

the function (beta and se). The first line shows the correct syntax for

this; we always start a function by some version of:

function [output] = name(inputs)

Critically, this does not mean that when we call the function regress we

must use variables named y and X. Instead, it just means that, within the
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program, the variables we have introduced will be locally referred to as y

and X. This will become apparent when we run the function shortly.

(ii) There are various lines of text which immediately follow the first line, each

of which is prefaced by the % symbol. Matlab reads the % symbol as

saying ‘skip this line’. In this way, the lines of comments can then be

thought of as an explanation (either for other users, or for ourselves in the

future) to help understanding of our code. As an added benefit, those lines

of comments which directly follow the function are included as the help file

to the function. When we type >> help regress at the command line,

the output will remind us what we need to input, and what we should

expect as output.

(iii) The function assigns values to the matrices beta and se. These are the

names of the outputs in the first line. This means that when the function

finishes running, it will return as outputs these assigned values.

(iv) Note that the function generally ‘looks nice’.9 In particular, note that

there are subheadings to show the main parts of the calculation, comments

(after the ‘%’ symbol) to explain the operation of several of the lines of

code, and the ‘=’ signs are tabbed to the same alignment.

Let’s use our function to repeat the regression from section 1.2. Assuming that

the ‘auto’ data from section 1.2 is still in memory, we need simply pass this data

to the function using the syntax of regress that we have defined. We can do

this from the command line10:

>> regress(y, X)

ans =

9 Even if we say so ourselves. . .
10 If you don’t save the function in Matlab’s current working directory (which we can see

using the cd command), you will need to tell Matlab where the M-file can be found. This
can be done by using the addpath command. For example, if you’ve saved the function in
a folder called ‘C:/MATLABcourse/’, you should enter addpath C:/MATLABcourse. Doing
this, you’ll come across a nice time-saving feature of Matlab: tab completion. If you enter

part of the path and press the tab key, Matlab will complete the path address if only
one unique ending exists, or list all available ways the path could end if multiple endings
are possible.
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-0.0001

-0.0058

39.4397

As explained earlier, we do not need to refer to our variable names as y and

X; these are the names that Matlab will use within the function regress, but

this does not constrain the way that we use that function. For example, let’s

create two new variables, taking the values of y and X, and run the regression

again:

>> barack = y;

>> hilary = X;

>> regress(barack, hilary)

ans =

-0.0001

-0.0058

39.4397

This is fine if we just want to display our regression results on the screen —

but what if we want to store the results in a variable (say, OLS beta)? This is

straightforward: we simply assign the variable as in section 1.2, but have the

variable refer to a calculation using our function:

>> OLS_beta = regress(barack, hilary)

OLS_beta =

-0.0001

-0.0058

39.4397

As expected, the function regress returns the same regression results as in

section 1.2. However, if you compare the output to the definition of the function
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regress, you might ask a curious question: whatever happened to the variable

se ? When we programmed the file regress.m, we specified the output as

‘[beta, se]’ — but, so far, regress has reported only beta. The reason is

that, when we ran regress, we have only asked for beta: if we call a function

from the command line, or assign the result of a function to a single variable,

Matlab will only return the first output variable. We can recover beta and

se by assigning both of these variables jointly:

>> [OLS_beta, OLS_se] = regress(barack, hilary)

OLS_beta =

-0.0001

-0.0058

39.4397

OLS_se =

0.0002

0.0006

1.6216

We might even want to ask Matlab to report a horizontal concatenation of

OLS beta and OLS se, just to make things look nice:

>> [OLS_beta, OLS_se]

ans =

-0.0001 0.0002

-0.0058 0.0006

39.4397 1.6216

Hopefully, we can now start to appreciate the beauty and simplicity of functions.

Yes, it is true that functions can save us from repeating a lot of unnecessary
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typing — and, yes, it is true that functions can help to avoid careless mistakes.

But the true beauty of functional programming is that we can replace a number

with the solution to a mathematical expression — and do so with a syntax that

is both simple and intuitive. For this reason, functions will be fundamental to

everything we do in the rest of this book.

1.5 A simple utility function

We are, of course, familiar with many types of functions from our microeconomic

theory. One particularly important building block is the utility function, which

we use to map the quantity of goods an individual consumes to his or her

payoff. Needless to say, this has all the ingredients to be used in a Matlab

function: it accepts inputs (goods consumed), it returns outputs (utility), and it

is self-contained, depending entirely upon the inputs and a number of technology

parameters.

Let’s consider the Cobb-Douglas utility function. In this case our output will

be utility, u, and our inputs good 1, x1, and good, x2. For now, we will take a

very simple form of the Cobb-Douglas function:

u(x1, x2) = x
1/2
1 · x1/22 .

Let’s have a look at how this would be set up in Matlab.

function u = utility(x1, x2)

% Function to calculate utility given a two-good

% Cobb-Douglas specification.

u = (x1^0.5) * (x2^0.5);

return
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Hopefully, this works well; we can confirm, for example, that the function returns

correct answers for a few different bundles. . .

>> utility(1, 4)

ans =

2

>> utility(3, 3)

ans =

3.0000

Of course, we rarely want to use Matlab merely to calculate a single number.

We need an elegant way of dealing with multiple possible combinations of x1

and x2. Suppose that, for some reason, we want to find utility for x1 = 5 and

x2 ∈ {1, . . . , 10}. Let’s create a vector x1 and a scalar x2 to represent this:

x1 = [1:10]';
x2 = 5;

We now have ten combinations of (x1, x2) for which we need to find u(x1, x2).

We could have utility operate ten separate times — for example, using a

loop.11 But this is very inefficient. Instead, we should have utility run once,

and operate on the entire matrix x1. This is known as vectorising. Having

defined x1 and x2, we should be able simply to enter:

utility(x1, x2)

But we have a problem! Look again at the function utility. As written, the

function works perfectly well for scalars x1 and x2, but doesn’t work for vec-

tors (or, more generally, for matrices). This is because the operators used there

11 We will introduce loops in Chapter 3.
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— the power operator and the multiplication operator — are understood by

Matlab to refer to matrices. We managed to get the correct answers when en-

tering two scalars (for example, when we calculated utility(1, 4)), because

the scalar/matrix distinction did not matter in this simple case. But our func-

tion doesn’t work for the more general case.

Fortunately, Matlab has an elegant solution: we can modify both the power

operator and the multiplication operator so they work ‘element-by-element’.

For both the power operator and the multiplication operator, we can do this by

introducing a leading ‘.’. Let’s go back and fix our function to allow for this. . .

function u = utility(x1, x2)

% Function to calculate utility given a two-good

% Cobb-Douglas specification.

u = (x1.^0.5) .* (x2.^0.5);

return

We now have a utility function that is correctly defined for matrices. This is

very powerful — among other advantages, we can now visualise our function

very efficiently. Let’s suppose that we want to see how our function behaves for

(x1, x2) ∈ [0, 3]× [0, 3]. We can create a meshgrid to cover this two dimensional

space (discretised on unit intervals):

>> [x1, x2] = meshgrid([0:3], [0:3])

x1 =

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3
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x2 =

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

Hopefully, it is clear what is going on here: we have defined a matrix x1 and a

matrix x2 such that x1 and x2 cover the grid {0, 1, 2, 3} × {0, 1, 2, 3}. With a

single operation, we can now calculate utility for this entire grid:

>> u = utility(x1, x2)

u =

0 0 0 0

0 1.0000 1.4142 1.7321

0 1.4142 2.0000 2.4495

0 1.7321 2.4495 3.0000

We can then visualise this with the ‘surfc’ command:

>> surfc(x1, x2, u)

Of course, we would really like to visualise this over a finer grid. This is easy

using meshgrid:

[x1, x2] = meshgrid([0:.1:3], [0:.1:3]);

u = utility(x1, x2);

surfc(x1, x2, u)

As you will see in figures 1.1(a) and 1.1(b), the difference is quite stark, although
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the complexity in coding each example is virtually identical once we have set up

our function. We hope that this is something which holds throughout much of

this book: while some things may seem initially quite simple, the basic methods

presented here can be generalised to solve and visualise functions of arbitrary

complexity. We will consider a more complicated function in the exercises that

follow.
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Figure 1.1: Cobb-Douglas Utility
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1.6 Review and exercises

command brief description

whos Describes variables currently in memory
help Describes a function along with its syntax
lookfor Searches all M-files (including help files) for a keyword
ones Creates an array of ones
cd changes current working directory
ls Lists content of current working directory
pwd Prints the location of the current working directory
dlmread reads in a comma-separated values file
disp Prints text to the output window
inv Inverts a matrix
size Displays the size of an array
format Sets the format of the output
mldivide An efficient way to solve matrix division
function Define a function which can be called from the command line
addpath Adds a directory to the places Matlab searches when a com-

mand is called
meshgrid Replicates vectors to form a rectangular matrix
surfc Draws a three-dimensional surface plot

Table 1.1: Chapter 1 commands
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Exercises

(a). We have used Matlab to recreate Stata’s point estimates in a regression

function. Can you now generate the same standard errors? We suggest you

try this exercise before looking at the regress function in section 1.4, or skip to

exercise (b) if you’ve already worked through this section carefully.

(b). Suppose that we want to generalise our utility function slightly, so that we

have:

u(x1, x2, α) = xα1 · x
(1−α)
2 .

Create a new function, utility2.m, to accommodate this. Check that

utility2.m matches the behaviour of utility.m for the special case α = 0.5.

Repeat the visualisation exercise. How does variation in α change the shape of

u?

(c). Suppose that a consumer has a utility function of the form:

u(x) = − exp(−r · x).

Suppose that x is drawn from a Normal distribution with mean µ and variance

σ2 (that is, µ ∼ N
(
µ, σ2

)
). An insurance company offers the consumer a

product with a guaranteed lower limit, g. In effect, the insurance company

says, “If you buy our product and x < g, we will pay the difference, so you will

get g. If you buy our product and x > g, we will do nothing, so you will just

keep x.”.

(i) Interpret the paramter r.

(ii) What is the certainty equivalent if there is no insurance product?

To answer this question, you may rely on the following result (which ap-

plies for this special ‘exponential-normal’ case):

E (u) = − exp

[
1

2
· σ2 · r2 − µ · r

]
. (1.3)
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(iii) What is the expected utilty with the insurance product? (Assume that

the insurance company provides the product for free.)

To answer this question, you may rely on the following result (which,

again, applies just for this special ‘exponential-normal’ case):

E (u |x > g) = − exp

[
1

2
· σ2 · r2 − µ · r

]
·
[

1− Φ(a+ σ · r)
1− Φ(a)

]
, (1.4)

where a =
g − µ
σ

, and Φ(·) is the cdf of the Normal.

(iv) (For Matlab. . . ) Assume now that µ = 0 and σ2 = 1. Define s(g, r) as

the consumer’s surplus — in utility terms — from having the insurance

product. Show the function s(g, r) for (g, r) ∈ (−3, 3)× (0, 1.5).
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Chapter 2

Optimisation

Mason: Are you sure you’re ready for this?

Goodspeed: I’ll do my best.

Mason: Your best?!

The Rock

Now the fun begins. Constrained optimisation is a fundamental tool of economists.

As Lazear (2000) put it:

Even when evidence suggests that the theories are wrong, we do

not drop the assumption of maximisation. Instead, our approach

is to think more carefully about the nature of the model set up,

but not about the rationality of the individuals making the choices.

Economists are rarely willing to assume that individuals simply do

not know what they are doing.

Essentially, there are two ways that optimisation matters for economists:
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(i) We need to use optimisation ourselves, in order to find the best possible

fit for our model (where ‘best’ is defined by some particular objective

function).

(ii) We treat agents as optimising — for example, we model consumers as

maximising utility, firms as maximising profits, and so on.

In many respects, these two concepts are fundamentally different. On the one

hand, we treat agents as if they optimise, as a way of specifying a model. On

the other hand, we actually optimise, as a way of estimating our model. We

should always keep these two concepts distinct in our minds. Yet each concept

involves an optimisation problem — and the principles and methods that we use

for the two problems are remarkably similar. In this chapter, we will consider

each in turn.1

2.1 Estimating models with optimisation

Before we go too far down the path of examining how other microeconomic

agents optimise, we’ll consider how we as researchers use optimisation. As we

suggested in point (i) above, this process starts with some objective function

that we seek to resolve. Then, by using Matlab’s optimisation commands

(which we’ll discuss over the course of this chapter), we ask Matlab to find the

highest (or more precisely, the lowest), value for this function given the entire

domain of inputs.

As we already have a useful benchmark from our regression estimates in section

1.2, this seems like a reasonable place to start. In chapter 1, we discussed how

OLS regression estimates could be determined by inverting matrices. Of course

every time we run an OLS regression, we are also solving for some well defined

objective function. There are a number of ways that we could think about this

objective function. The typical way is as the sum of the squared error terms (or

sum of squares), however, you will perhaps remember that OLS estimates can

also be calculated by maximum likelihood.

1 And soon, we will consider both togther. . .
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In the case of maximum likelihood, we are able to form an objective function

by relying on the assumption of normality of the stochastic error term. As is

likely laid out in your favourite econometrics text, the log-likelihood looks like

this:

L(β, σ2;y |x)

= −
(
N

2

)
ln 2π −

(
N

2

)
lnσ2 −

(
1

2σ2

)
(y − βx)′(y − βx) (2.1)

This is all well and good, but now, how do we actually maximise something

like this in Matlab? Fortunately given our work in Chapter 1, Matlab’s

optimisation routines can be largely based around functions. Essentially, we

tell Matlab to find the highest value of the function we define by varying the

values of the input parameters. In the above case this implies finding the highest

value for L, by searching over combinations of the parameters β and σ2.

The maximisation process thus begins by converting our objective function into

a Matlab function. It is convenient to optimise over a single vector, rather

than over two separate objects — so we define θ =
(
β′, σ2

)′
, and optimise in

terms of θ:

function[ML] = normalML(theta,y,x)

% NormalML(theta,y,x) calculates the likelihood function given

% a matrix of covariates x and a dependent variable y with an

% unobserved stochastic error term which is distributed accor-

% ding to a normal distribution.

%

% The likelihood function is evaluated at the coefficients

% theta, which must be specified by the user. These should

% include as many coefficients as are to be estimated in the

% model, and finally an estimate of sigma.

%

% See also mle

%**************************************************************

%*** (1) Form stats

%**************************************************************
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N = length(y);

K = size(x,2);

sig = theta(K+1);

beta = theta(1:K);

u = y - x*beta’;

%**************************************************************

%*** (2) Likelihood function

%**************************************************************

ML = -(N/2)*log(2*pi)-(N/2)*log(sig^2)-(1/(2*sig^2))*(u’*u);

ML = - ML

return

The penultimate line of this code looks remarkably similar to (2.1). The re-

mainder of the code just consists of determining a number of other parameters

(such as N) based on the data in question. Perhaps the last line is the most

confusing. The reason why we reverse the sign of our maximum likelihood value

is that all of Matlab’s optimisations are based on minimisation. As a result,

in cases such as this and many of the others which we’ll go through in this

book where we are actually interested in maximisation, we will just undertake

a simple transformation such as this when calculating our objective function.

Once we’ve defined our objective function in this way, we can use Matlab’s

clever range of solvers to determine the optimal value. For our ML example,

we’ll focus on the fmincon function. This function finds the minimum value,

while allowing for both equality and inequality constraints, as well as the option

of defining upper and lower bounds for parameters. If we were to set this out

on paper it would look something like the following:

min
x
f(x) such that =


c(x) ≤ b

ceq(x) = beq

lb ≤ x ≤ ub,
(2.2)

where further details regarding each constraint can be found in the Matlab

help file for fmincon. However, this may all be rather abstract, so let’s have
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a look in practice. To do this, we’ll return to our parameter estimates from

section 1.2. There we had defined a matrix X and a vector y which had come

from the trusty auto dataset. We’ll ask you to re-enter or recall these matrices

(perhaps they are still in Matlab’s working memory, in which case you need do

nothing), and we’ll use this data to see whether our likelihood function allows

us to recover the regression estimates we calculated in the previous chapter.

In the case of this problem, there is no clear upper and lower bound that we

necessarily want to impose on our parameters, but we’ll define some values

to limit the domain over which Matlab searches.2 Here we are going to be

estimating four parameters which correspond to the three β̂’s, along with σ̂2.

We’ll set up the following lower and upper bounds for each of these parameters:

>> lb = [-1000, -1000, -1000, 0];

>> ub = [1000, 1000, 1000, 100];

We’ll also define an initial range of values from which Matlab should begin its

search. Although we have quite a good idea of what these parameters should

look like from our regression in chapter 1, we’ll pretend this isn’t the case, and

be reasonably agnostic with our initial choice:

>> theta0 = [0, 0, 0, 1];

Finally, we want to define a number of optimisation options. While Matlab

makes a range of assumptions when optimising (such as the optimisation method

to use, the number of iterations, and so forth), we are able to control all these

ourselves. We define a few of these below, although the full list of options can

be seen by typing optimset in your Matlab window.

>> opt = optimset(`TolFun',1E-20,`TolX',1E-20,`MaxFunEvals',1000);

2 Matlab also has a function for unconstrained optimisation: fminunc. But our problem is
constrained, because we have σ2 > 0. Further, even if our problem were not constrained by
economic or econometric theory, it may still be useful to use fmincon, and to impose some
bound constraints on ‘reasonable’ values of the parameter space.
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So, finally, we have all our ingredients; we’ve defined an objective function, the

constraints, the starting point, and the optimisation options. With all of this,

it’s now just a matter of letting Matlab get to work! We issue the fmincon

command below:

>> fmincon(@(theta)normalML(theta,y,X), theta0, [], ...

[], [], [], lb, ub, [], opt);

We agree that this looks a little bit complicated. It is, however, about as

involved as a typical Matlab command is ever going to get. You’ll note that

at its heart it is just a call to fmincon, and we’ve included all the parts we’ve

just defined above (the starting point theta0, the upper and lower bounds,

and the optimisation options opt). The tricky part is in deciphering the first

argument which starts with the @ symbol. In Matlab parlance this is known

as a “function handle”, however this is essentially little more than the name of

our function, and an indicator of which parts of the function we are maximising

over. The normalML(theta,y,X) part of this argument just says that we use

the function normalML and the data y and X which we defined above,3 while the

@(theta) part says that we are maximising over theta. The remainder of the

arguments are simply made up of empty braces. While we won’t concentrate

too much on this for now, this should offer us some hint about how to set up

problems where explicit equality and inequality constraints are required.

We encourage you to play around with this code until you feel comfortable with

the various moving parts. For example, try varying the optimisation settings,

the lower and upper bound, and the starting point. Depending upon the settings

you use, the output will look something like the following:

Local minimum possible. Constraints satisfied.

fmincon stopped because the predicted change in the objective function

is less than the selected value of the function tolerance and constraints

are satisfied to within the default value of the constraint tolerance.

3 If you’ve skipped over chapter 1 before reading this, you’ll need to refer to section 1.2 in
order to generate X and y.
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No active inequalities.

ans =

-0.0001 -0.0058 39.4396 3.3842

Importantly, we see that with these settings our ML estimator does a good job

in recovering the correct estimate for β that we estimated earlier.

The optimset options provide a large range of options which are worth being fa-

miliar with when solving for minimums in this way. If, for example, we are inter-

ested in producing a graph of convergence of the ‘PlotFcns’,‘optimplotfval’,

while if we are interested in seeing a larger range of output including the proce-

dure and the value of the objective function, we could specify ‘Display’,‘iter’

as part of our options command. In figure 2.1 we see the output from the

PlotFcns option. As we discussed earlier, we have taken the absolute value of

the likelihood function so it appears to be converging on a positive value from

above, although in reality it will be converging on a negative value from below.

Of course, as we see in our estimates for β, this has no effect on the values

produced.

2.2 Solving models with optimisation

Maximum likelihood, along with many of the other estimation techniques based

around optimisation that we’ll see in this book, are perfect candidates for Mat-

lab’s fmincon routine. However, as we discussed in the opening of this chapter,

there is an entirely different reason why we as microeconomists might be inter-

ested in maximisation. Constrained maximisation is at the heart of many, or

even most, of our typical microeconomic models.

Let’s start by considering a standard optimisation problem in consumer theory:

that of a consumer determining his or her optimal consumption of two goods to

maximise a Cobb-Douglas utility function. We are by now quite familiar with

this utility function in Matlab. We return to this example — admittedly simple
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Figure 2.1: Convergence of (the absolute value of) the likelihood function

— to further demonstrate Matlab’s optimisation routines, and incorporate

some features and checks we haven’t yet seen in the previous section.

As in the previous chapter, we’ll asume here that the consumer’s utility function

is U = x
1/2
1 x

1/2
2 , so that her maximisation problem is:

max
x1,x2

x
1/2
1 x

1/2
2 subject to I = p1x1 + p2x2. (2.3)

Fortunately, we’ve already defined this function in our utility.m code. Graph-

ically, we are interested in finding how the consumer can optimally maximise the

utility presented in figure 1.1(b). This utility comes entirely from the quantities

of each good consumed (displayed on the x- and y-axes), and is calculated on

the z-axis. Of course, were the consumer not subjected to some binding budget

constraint she would consume the maximum amount of both goods and arrive
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at the maximum utility of 3 units (which corresponds to the red portion of the

figure).

Below we set up a very slight variation of utility.m function from chapter

1. This brief function will, like its analogue from the previous chapter, return

the value u for utility, and takes as arguments the quantity of the two goods

consumed. Note that here we define our input argument X as a single vector

rather than the slightly more verbose option:

function u = utility(x1,x2).

There is a functional reason for defining X in this manner. When our func-

tion accepts only one argument, we can avoid using the quite ungainly function

handle that we used in our call to fmincon in section 2.1. Specifying the argu-

ments this way rather than in the more extensive x1,x2 form is, in reality, only

a matter of style, as later in the function we can simply ‘unpack’ our vector into

individual elements, as we see in the first two command lines. Also, as we dis-

cussed in our ML example above, in the final line we return the negative of our

typical notion of utility, given that Matlab will be minimising this function.

function u = cobbdouglas(X)

% Function to calculate utility given a Cobb-Douglas specif-

% ication and varying the quantites of goods consumed (vector

% X requires two goods).

x1 = X(1);

x2 = X(2);

u = -(x1^0.5)*(x2^0.5);

return

With the function that we will ask Matlab to optimise now in hand, we can

jump right into the business of actually optimising. Once again we will rely

on the fmincon command given that in this case we are dealing with explicit

constraints.
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As before, We can create a series of matrices (or vectors) that indicate to

fmincon what our initial guess and constraints are. Let’s imagine for exam-

ple that our consumer has a total income of $100, faces goods prices of $4 and

$7, and our initial guess is that she would consume 15 and 5 units respectively.4

>> I = 100;

>> P = [4,7];

>> G = [15,5];

>> lb = [0,0];

>> ub = [25,100/7];

Here we have introduced the right side of our budget constraint (the prices) as

P, the left side as I, our initial guess as G, and an upper and lower bound for

the consumption of each good (ub and lb respectively). Now, let’s see how this

all comes together with the fmincon command:

>> [consumption, u, exitflag] = fmincon(@cobbdouglas,G,P,I,[],...

[],lb,ub);

consumption =

12.5024 7.1415

u =

-9.4491

exitflag =

5

This call to fmincon looks pretty similar to the version in section 2.1. However,

4 It is not particularly important that the starting point respects the income constraint, as
Matlab will deal with that once optimisation begins.
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you will notice a few differences. Perhaps most obviously, the first argument

is now signficantly simpler. We were able to avoid the entire business of the

function handle given that the objective function cobbdouglas only depends

upon one argument (X), so Matlab knows that it must optimise with respect

to X. Another difference is that here we ask for various objects to be returned:

consumption, u and exitflag. Matlab understands this to mean that it

should return: (i) the optimal input values for X, (ii) the value of the objective

function at this optimum, and (iii) a code explaining how our optimisation

method arrived at the final answer. When we estimated regression coefficients

using ML we did not explicitly request the second and third option — so, as

is always the case with Matlab functions, we were only returned the optimal

input values.

The value for the objective function (u) needs relatively little explanation, how-

ever we will want to consider the exit flag quite carefully (both in this explana-

tion, and more generally whenever we optimise in Matlab). There are a wide

range of reasons why Matlab can decide that it has ‘found’ the minimum value,

and all of these are controlled using the optimset options that we’ve discussed

previously. As is often the case, Matlab’s help file offers a good starting point.

The file for fmincon lists all possible exitflags, and the reason why the optimi-

sation routine terminates in each case. We will see for example that an exitflag

of 5 is returned when the derivative at the final point was arbitrarily small. Of

course, we can never be entirely sure that this corresponds to a local minimum.

Perhaps if we were to set finer search criteria (using optimset), Matlab would

actually be able to find a smaller value for the objective function. Similarly, it

may help Matlab if we were to provide an analytical expression for the Jaco-

bian.5 In general, it is also a good idea to restart your optimisation from the

final point, and see whether any improvements can be made. Let’s try that here

by plugging our consumption result back into fmincon:

>> [consumption,u,exitflag] = fmincon(@cobbdouglas,...

consumption,P,I,[],[],lb,ub)

consumption =

12.5000 7.1429

5 This often requires great cost — both in terms of time and emotion — to the programmer.
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u =

-9.4491

exitflag =

1

We see a small change in our consumption values, and that now we are returned

an exitflag of 1. Again referring to the help file, this implies that the constraint

violation and tolerance of the objective function are less than the (very small)

values which we have specified in the optimisation options. This is a reasonably

satisfying result, and subsequent tests from this starting point suggest that no

further improvements are found. Usually, ‘exitflag = 2’ is a reasonable sign of

success — though, as the previous discussion indicates, deciding on convergence

criteria is often more a matter of art than science.

The rest of the command is issued exactly as we saw in the previous section. This

involves passing fmincon the constraints and inital guess as parameters: first the

command name, second our initial guess, then the left-hand side of the inequality

constraint6, followed by the right-hand side of the inequality constraint, and

finally the upper and lower bounds we have defined for consumption of each

good. Once again, we have included empty braces [] in our code. This tells

Matlab that there is no strict equality constraint in this case. As always, we

refer you to the help files (or the command line!) to clear up any lingering

doubts.

This code likely seems quite simple, and perhaps you are left wondering why

we would even bother to do something like this in Matlab. This is admittedly

a very simple function — but simple functions are useful building blocks for

more complicated analysis. Let’s imagine for example that we wanted to nest

6 Note that here we treat the income constraint as non-binding, although generally it always
will. An individual could choose to spend less than all their income, although the form
of the Cobb-Douglas utility function implies that maximisation of utility is achieved by
spending all income on consumption.
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utility maximisation inside a more extensive model. This would then involve

defining a (potentially much) more complex function, which calls our simple

Cobb-Douglas maximisation technique. Below we provide an example of such a

function which is built around our previously defined function:

function [u,c] = budget(P,I,X)

%Budget presents the budget constraint faced by an individual,

%and calculates their optimal consumption based upon a Cobb-

%Douglas utility function defined in the function utility.m

%

%The syntax of the function is budget(P,I,X) and the function

%accepts as arguments a 2*N vector of prices, P, the total inc-

%ome, I, and the initial guess used in the fmincon command, X.

%

%see also fmincon

%**************************************************************

%*** (1) Unpack relevant parameters from function call

%**************************************************************

p1 = P(1);

p2 = P(2);

lb = [0,0];

ub = [I/p1,I/p2];

%**************************************************************

%*** (2) Determine utility maximising consumption

%**************************************************************

[c, u] = fmincon(@cobbdouglas,X,P,I,[],[],lb,ub);

%**************************************************************

%*** (3) Create graphical output

%**************************************************************

x2 = 0:I/p2; % all possible values of x2

x1 = (I-p2.*x2)./p1; % values of x1 corresponding to x2

fig = plot(x1,x2,’LineWidth’,2);

hold on
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x1 = u.^2./x2; %calculate utility everywhere

axis([0,I/p1,0,I/p2]); %set axes

plot(x1,x2, ’color’,’r’,’LineWidth’,2)

xlabel(’quantity of good x_1’, ’FontSize’, 14);

ylabel(’quantity of good x_2’, ’FontSize’, 14);

title(’Cobb-Douglas Utility Maximisation’, ’FontSize’,16);

return

Here you will see that we are dealing with a function “budget” which lets

us calculate all possible points on a budget constraint for any set of incomes

and prices {I, x1, x2}, and also plots the utility function of the consumer which

corresponds to utility maximisation. Whilst we haven’t introduced a great many

new commands in this example, there are a number of complex elements which

are worth examining (and changing when you run this in your Matlab session).

Finally, let’s try out this command and see what we get.

>> P=[100,200];

>> I=10000;

>> X=[40,20];

>> budget(P,I,X);

We see that as well as our output from the utility optimisation we get a plot

of the consumer’s budget constraint and the appropriate utility function (figure

2.2).

2.3 Simulating model solutions

At its core, microeconometrics is about heterogeneity. If everyone faced the

same set of choices, with the same constraints, and had the same preferences,
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Figure 2.2: Single utility curve and budget constraint

then we would all behave in the same way — and there would be little advantage

to collecting any dataset greater than N = 1. In many standard econometric

models, we allow heterogeneity to enter through an additively separable ‘error’

term. Of course, there is nothing inherently wrong with this approach — but

we may want to explore the consequences of introducing random variation in

other parts of a model. We end this chapter with a simple illustration of how

we might do this in Matlab.

Matlab offers us a wide range of tools to consider drawing random numbers

from the specific distributions which are likely to underlie our Monte Carlo

Simulations. Table 2.1 lists a number of these distributions, and their associated

Matlab commands:

It is sometimes argued — particularly in development economics — that differ-

ent economic actors face different prices, based on their individual character-

istics. (For example, information asymmetries may lead different firms to face
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Table 2.1: Random Number Generators

Distribution Command

uniform rand()

normal randn()

lognormal lognrnd()

multivariate normal distribution mvnrnd()

many others... random(distbn,)

different factor costs.) Suppose, then, that we maintain our earlier model of

a consumer with Cobb-Douglas utility. However, suppose that we now assume

that, across the population, consumers face uniform variation in the price of

good 1:

p1 ∼ U(100, 150). (2.4)

Suppose that we are interested in characterising the resulting distribution of

consumption bundles. Given the tools that we have discussed, this is easy. The

following script shows a simple illustration of how this can be done. We leave it

to you to step through the script to understand how it works; in the exercises

that follow, we suggest two extensions.

%************************************************************

%*** (1) Setup, simulation of random variation

%************************************************************

clear

rng(1)

reps = 100;

pshock = [rand(reps, 1) * 50, zeros(reps, 1)];

I = 10000;

P = [50, 200];

x0 = [1, 1];

lb = [0, 0];

c = NaN(reps, 2);
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opts = optimset(’algorithm’, ’sqp’, ’display’, ’off’);

%************************************************************

%*** (2) Determine optimal consumption in each case

%************************************************************

for count = 1:reps

TempP = P + pshock(count, :);

ub = I./TempP;

c(count, :) = fmincon(@cobbdouglas,[1, 1], TempP, ...

I,[],[],lb,ub, [], opts);

end

%************************************************************

%*** (3) Visualise results

%************************************************************

subplot(1,2,1)

scatter(c(:, 1), c(:, 2))

axis([min(c(:,1))-5, max(c(:,1))+5, ...

min(c(:,2))-5, max(c(:,2))+5]);

xlabel(’Good 1 Consumption’)

ylabel(’Good 2 Consumption’)

subplot(1,2,1)

cdfplot(c(:, 1))

xlabel(’Good 1 Consumption’)

ylabel(’F(p_1)’)

return
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Figure 2.3: Incorporating heterogeneity in Cobb-Douglas utility maximisation
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2.4 Review and Exercises

command brief description

length Determines the number of rows in a matrix
pi The mathematical constant π
fminunc Routine to minimise an objective function with no constraints
fmincon Routine to minimise an objective function subject to linear or

nonlinear constraints
optimset Provides control over the optimisation process in Matlab
plot Draw a two-dimensional graph
hold on Keep current plot in graph window, and add another plot to

the output
axis Set minimum and maximum for graph axes
xlabel Label x-axis in the plot window (allows for LATEX style parsing)
title Add a title to the plot window
rand Allows for a (pseudo-)random draw from a uniform(0,1) dis-

tribution
randn Allows for a (pseudo-)random draw from a normal distribution
rng Sets Matlab’s psuedo random number generator at a replica-

ble point
NaN Pre-fills a matrix with ‘empty’ values
for Repeats a command or series of commands a specified number

of times
subplot Allows for multiple graphs on the same plot window
scatter Bivariate scatter plot
cdfplot Draws the empirical CDF of a vector

Table 2.2: Chapter 2 commands
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Exercises

(i) Write an alternative maximum likelihood estimator. Rather than an

OLS estimator, try generating Matlab code to estimate a probit model.

Remember, that in this case the log likelihood function looks like:

L(β;y|x) =
∑N
i=1{yi · ln Φ(βxi) + (1− yi) · ln[1− Φ(βxi)]}. Benchmark

this code using the auto data set as before. Estimate probit foreign

length weight in Stata. Ensure that your code replicates these results

in Matlab.

(ii) Using our Cobb-Douglas utility function, simulate variation in income.

Use simulated results to plot Engel curves for x1 and x2.

(iii) Using our Cobb-Douglas example, suppose that consumers with higher

income also tend to face lower costs for good x1. Show how a simulation

method could be used to think about consumption bundles in this case.

(Hint : mvnrnd may be useful. . . )
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