
Chapter 7

Dynamic Choice on an

Infinite Horizon

“Bigger than the biggest thing ever and then some. Much bigger

than that in fact, really amazingly immense, a totally stunning size,

real ‘wow, that’s big’, time. Infinity is just so big that by compari-

son, bigness itself looks really titchy. Gigantic multiplied by colossal

multiplied by staggeringly huge is the sort of concept we’re trying

to get across here.”

Douglas Adams, “The Hitchkiker’s Guide to the Galaxy”

If you’re following this book linearly, in the previous chapter you’ll have gone

through a number of issues involved in determining optimal choice across time

periods, including an outline of the ideas behind Bellman’s functional equation.

In setting up all of these solutions, we’ve relied on having some known point

from which to anchor things: typically the fact that no value remains if goods

are left unconsumed after the final period of time. Once we have this final period

to act as an anchor, we are able to iterate backwards, and in this way calculate

the value function—and as a result optimal decisions—in all time periods.

122

But, you might ask, how would we move ahead were we not to have such a point

to work from? What if we are solving a problem that doesn’t have a terminal

point at all? There are many times in microeconometric problems where this

may be a relevant concern. For example, it seems unlikely that many firms

would plan to close up shop at a defined point in the future. Indeed, even in

the case of individuals deciding over their lifetime, the terminal point may be

so many periods away1 (hopefully!), so uncertain, and discounted in such a way

that acting as if the horizon is infinite may be the most reasonable approach

when searching for a solution.

Problems of this type—those that never end and hence have no terminal point

as an anchor—will require another class of solution. Fortunately, such a sit-

uation can be well-served using the ideas motivated by Bellman (1957) which

we discussed in chapter 6. In the sections ahead we will have a look at this

class of solutions, and set up some implementations in Matlab. Once again

though, there are many applications, and we will only scratch the surface. We

hope that this outline should provide you with a strong foothold in how to set

up a wider range of these problems, but direct the interested reader to further

resources such as Acemoglu (2008); Adda and Cooper (2003); Ljungqvist and

Sargent (2000); Judd (1998); Dixit (1990) and the many papers cited therein.2

In this chapter we return to the problem outlined in Chapter 6 which repre-

sents a firm’s decision over how much to invest now, and how much to save

for the future. This problem has a long history in economics, being described

by Ramsey as early as 1928 (although applied to countries rather than firms;

some examples for firms include Bond and Söderbom (2005); Fafchamps et al.

(2011)). The objective is to maximise total discounted utility, subject to the

1 Of course, the idea of a ‘period’ is quite nebulous. For example, when defining these
problems, should we consider a period to be a year? Or a month? Or a day? Generally we
will allow the context of a problem to dictate the length of a period. For example in optimal
child-bearing decisions a woman can only become pregnant at most once every 9 months, in
job search a searcher can receive job offers which much greater frequency (depending upon
search intensity), and so forth.

2 Much work on dynamic programming with an infinite horizon has been done in macroe-
conomics, for example considering country growth rates and investment decisions. There
is a large literature in this area, including resources on the application of these problems
in computer languages (see for example the excellent references of Stachurski (2009) and
Sargent and Stachurski (2013) in Python, or Collard’s online lecture notes on value function
iteration in Matlab with a macroeconomic focus.)

123

flow equation for capital:

max
{ct}∞

t=1,{kt}∞
t=2

∞�

t=1

βt−1 ln(ct) subject to kt+1 = θkαt − ct

ct ≥ 0 (7.1)

kt ≥ 0.

You will note here that we are assuming quite a particular functional form:

that of log utility and Cobb-Douglas production. There is a reason that we

make these assumptions. Such a functional form allows for us to find both an

analytical and a numerical solution. Typically finding an analytical solution to

dynamic problems of this type is not possible or very difficult—meaning that

we have to revert to numerical tools like Matlab. However, in this case having

both solutions is quite handy. We can see how we would resolve this inMatlab,

while also having the exact solution against which we can compare our results.

7.1 Value Functions and Infinite Solutions

7.1.1 A Rough Outline

In the previous chapter we introduced the notion of Bellman’s functional equa-

tion to solve dynamic optimisation problems (see for example equation 6.8).

The basic idea is that we break down an optimisation problem which runs over

many periods into two periods: now (ie the current period), and the future,

where the value of the future is represented by a ‘functional equation’ which we

have been labelling V . This looks something like:

V (k) = max
c,k̃

�
u(c) + βV (k̃)

�
(7.2)

where here rather than rely on time subscripts we are using a tilde over a

variable (such as k̃) to signify future values, and no tilde (ie k) to denote current

values.3 Substituting the functional forms we assumed in (7.1), into our Bellman

3 This notation is not without reason. We use it given that time does not actually enter into
the Bellman equation at all. In other words, the Bellman equation is stationary.

124

equation implies that (7.2) will end up looking like:

V (k) = max
c,k̃

�
ln(θkα − k̃) + βV (k̃)

�
. (7.3)

So far this looks much like what we have done so far in finite horizon problems.

However as we suggested in the introduction to this chapter, in infinite horizon

problems, we have (by definition) no final period, so backwards recursion from

VT is no longer a viable option. Fortunately we have a way forward using the

tools we’ve already been looking at. Much work exists to show that if we choose

an arbitrary value function—say for example V (k) = 0× k = 0, and iterate on

this value function, we will eventually converge on the true value function.

If you will permit us to be somewhat verbose on this point, this implies that we

choose some arbitrary initial function, in this case a vector of zeros, and plug

this into the right hand side of (7.3) as V (k̃). Resolving (7.3) will give us a new

value function (ie the left-hand side of (7.3)). If we then plug this new value

function back into the right-hand side of the equation, we will once again get

a new value function, which we yet again substitute into (7.3) ad infinitum –

or rather, until the value function on the left-hand side is equal to the value

function on the right-hand side. At this point our convergence is complete, and

we know that we have the true value function. Essentially then, we are searching

for a fixed point which implies that we have determined a function V (·) which
summarises the value of behaving optimally forever more. You may note that

in this case the same V (·) enters both sides of the functional equation (7.3)

implying stationarity, or that optimal consumption just depends upon capital,

and not upon the time period in which the firm finds itself.

In more compact form, we are interested in calculating:

ΓV (k) = max
k̃

�
ln(θkα − k̃) + βV (k̃)

�
∀ k, (7.4)

where Γ is an operator representing this process of iteration on the value func-

tion until the point that ΓV (k) = V (k). We do not think that this book is

the place to provide a great deal of detail on the maths (and certainly not the

mathematical proofs!) behind this idea. However, we do provide an appendix to

this chapter where we show analytically how value function iteration works. If

125

you are after more precise mathematical details about the process of value func-

tion we would refer you to one of the previously cited texts such as Ljungqvist

and Sargent (2000), or alternatively, to Bertsekas (1976, 2005), as from here

on we choose to focus entirely on the computational aspects of the problem.

In order to do so, we would ask that you convince yourselves (or perhaps you

are already familiar with the maths behind dynamic optimisation) that this

particular Bellman equation (7.3) can be satisfied by a value function of the

form:

V (k) =
α

1− βα
ln k + F (7.5)

where F just represents a constant, and that this value function implies the

following policy function:

c(k) = θkα(1− βα). (7.6)

If you are not entirely convinced, or if you simply wish to brush up on your

math here, we direct you to the aforementioned appendix to this chapter where

we show that this is the case.

7.1.2 Computation

The Value Function

In moving to computation then, the question becomes how we can actually

instrumentalise the iteration process ΓV (k). From (7.4) a number of things

perhaps stand out. We will likely have to calculate θkα − k̃, we will likely have

to try this over a range (or grid) of different values of k̃, we will want to choose

the ‘best’ outcome for k̃ in the sense that it maximises ΓV (k), and finally, we

will want to do this for ‘all’ values of k. Let’s have a look at some code. . .

function [TV optK] = iterateVF(V,maxK)

% iterateVF(V,maxK) takes a potential value function V and

% performs an iteration, returning the updated proposed value

% function TV. When TV==V, we have found the true value

% function. The scalar maxK represents the maximum possible

% amount of capital that can be consumed in one period

126

%==

%=== (1) Basic Parameters

%==

alpha = 0.65; beta = 0.9; theta = 1.2;

grid = length(V);

K = linspace(1e-6,maxK,grid)’;

TV = zeros(length(V),1);

%==

%=== (2) Loop through and create new value function for each

%=== possible capital value

%==

for k = 1:grid

c = theta*K(k)^alpha-K(1:k);

c(c<=0) = 0;

u = log(c);

[TV(k) optK(k)] = max(u + beta*V(1:k));

end

return

This code provides one iteration of the value function, after being passed a

proposed value function V, and given an upper bound for capital (maxK). The

first section simply inputs our necessary parameters so we won’t discuss this.

The second section is the important part of this function. Firstly we loop over

all possible values of k. This ensures that when we find our final solution, it

will hold for all k. In this loop we calculate utility based on all possible values

for k̃ – in the first line of the loop we define a vector of possible values for

k̃: from lowest possible K value, right up to the entire amount k. From there

we maximise the current iteration of the value function: here define a vector

which gives us two outputs: TV(k) which is the maximised value function, and

optK(k) which is the capital value associated with this maximum (note that if

this is unclear to you, it may be worth reading the help file for max).

Now that we have defined a function iterateVF which allows us to make one

127

iteration of a value function, we will want to implement this by passing this

a proposed value function, and receiving an updated value function. As per

the appendix of this chapter, we will subscript proposed value functions with

j ∈ [0,∞) to signal the iteration number. In this case V0 will be our starting

point (which we will arbitrarily define as V0(k) = 0), and the result for the first

iteration will be labelled as V1(k). In the following code we run through 10

value function iterations, in which case the final result will be V10(k).

%==

%=== (1) Set parameters, plot analytical solution

%==

Beta = 0.9; alpha = 0.65; theta = 1.2; aB = alpha*Beta;

K = linspace(1e-6,100,100);

E = alpha/(1-aB);

F = 1/(1-Beta)*(log(theta*(1-aB))+aB*log(aB*theta));

soln = E*log(K)+F;

plot(K,soln, ’-k’, ’LineWidth’, 3)

axis([0 100 -15 10])

hold on

%==

%=== (2) Plot 10 value function iterations

%==

TV = [zeros(100,1) NaN(100,9)];

for iter = 1:10

fprintf(’Iteration number %d\n’, iter)

TV(:,iter+1)=iterateVF(TV(:,iter),100);

end

plot(K,TV)

xlabel(’Amount of Capital’, ’FontSize’, 12)

ylabel(’Value Function’, ’FontSize’, 12)

title(’Value Function Iteration’, ’FontSize’, 14)

The above script stores our 10 value function iterations in the matrix TV, along

128

with the initial value function which is just a vector of zeros. Along with these

value function iterations which we calculate in Matlab, we also define the

analytical solution which we can use as a comparison to our numerical solutions.

The resulting output is presented in figure 7.1. You’ll probably notice a few

things in this figure. Firstly, the initial value functions (the thin coloured lines)

seem to converge reasonably rapidly towards the true value function (the thick

black line). However, there’s clearly more work to do. Our 10th iteration, V10(k),

(the light blue line), is not that close to the target result.

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

Amount of Capital

V
a
lu

e
 F

u
n
c
ti
o
n

Value Function Iteration

Figure 7.1: Convergence after 10 Iterations

In this case we can write another script in which we explicitly require the value

function to converge before stopping. This time we won’t use a loop which

defines a certain number of iterations (as we did above in the code with for

iter=1:10), but rather we will ask Matlab to itearate on our code until a

certain condition is met. The idea here is that our value function iteration will

129

have ‘converged’4 when Vj+1(k) ≈ Vj(k) ∀ k. In order to operationalise this in

Matlab we use a while loop. As long as the following convergence criterion is

not met, we ask Matlab to keep iterating on the value function.

||Vj+1(k)− Vj(k)|| ≤ ε ∀ k (7.7)

In the code which follows our ε is labelled crit (which we define as 0.01), and

at the end of each iteration we calculate ||Vj+1(k)−Vj(k)||, which we call conv.

%==

%=== Convergence to the Value Function

%==

conv = 100;

crit = 1e-2;

K = linspace(1e-6,100,1000);

V = zeros(1000,1);

axis([0 100 -15 10])

hold on

cc = hot(70);

Iter = 0;

while conv>crit

Iter = Iter+1

[TV opt] = iterateVF(V,100);

conv = max(abs(TV-V))

plot(K,TV, ’color’, cc(Iter,:))

V = TV;

end

The output from this code is presented in figure 7.2, and here we see that our

value function does indeed converge. In this graph we’ve used Matlab’s inbuilt

4 We write converged in inverted commas here to imply that it is a slight abuse of nomen-
clature. In numerical iterations we will never have true convergence of the value function.
Rather, contiguous value functions will move closer and closer to one another as we iterate
towards infinity until the distance between them is extremely small.

130

“colormap” hot, which results in higher iterations on the value function being

‘hotter’ colours. As with all the code outputs in this book, we suggest you look

up any functions that you aren’t familiar with in Matlab’s help files or on

the web, and encourage you to play around and see how the results react to

different input parameters. What happens to the following code if you start

with an alternative V0(k) for example? How about if you make a more finely

spaced capital grid?

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

Amount of Capital

V
a
lu

e
 F

u
n
c
ti
o
n

Value Function Iteration

Figure 7.2: Convergence to the True Value Function

The Policy Function

After all of this work to find the value function in problems with an infinite

horizon, you may be wondering how we actually determine what our firm’s

optimal behaviour is. More specifically, how much should the firm consume at

a given point in time, and how much should it save? Fortunately, finding this

131

policy function—that is c(k), or the mapping from capital to consumption—is

reasonably straightforward.

You may remember that in the function iterateVF, we solved for both the

value function at each point on our capital grid, along with the corresponding

optimal amount of capital consumption at this point. If you want to refresh

your memory, have a look at the final line of the loop in section 2 of this code.

You’ll also notice that we return this optimal capital vector when we define the

Iterate VF (to review functions and returning vectors, see chapter 1). And

finally, when we run our optimal convergence code, for each iteration we save

two vectors: TV, the value function, and opt, the optimal amount of capital

consumption.

In this case, generating the policy function is just a question of applying these

optimal capital values to our capital grid K. In the five lines of code which

follow we show how we generate figure 7.3b. This shows both our numerically

calculated policy function (the solid blue plot), along with the exact analytical

result we derived in appendix 7.A.

>> aB = 0.65*0.9; theta = 1.2; alpha = 0.65;

>> plot(K,K(opt),K,aB*theta*K.^alpha, '--r', 'LineWidth', 3)

>> xlabel('Amount of Capital', 'FontSize', 12)

>> ylabel('Optimal k_{t+1}', 'FontSize', 12)

>> title('Policy Function for Capital Consumption', 'FontSize', 14)

Exercise: Create similar graphs to these optimal kt+1 graphs displayed as 7.3a

and 7.3b (with both analytical and numerical predictions) for optimal consump-

tion at t based upon the amount of capital in hand at t.

7.2 Policy Iterations and Faster Solutions

In the previous section we saw that iterating on the value function in Matlab

is quite an effective way to find the numerical solution to these infinite horizon

132

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

Amount of Capital

O
p
ti
m

a
l
k

t+
1

Policy Function for Capital Consumption

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

O
p
ti
m

a
l
k

t+
1

Amount of Capital

Policy Function for Capital Consumption

Figure 7.3a: Calculated Best Path Figure 7.3b: True Best Path

problems. However, this value function iteration is not necessarily computation-

ally cheap. In some cases this may not concern you. If the ‘traditional’ value

function iteration works for your particular problem you may be happy to learn

and apply this, rather than focusing on more efficient refinements. However, in

other cases you may find that it is worth your while to spend some time learning

how to further optimise your code. If, for example, you expect to work with a

very large state space, you may find that each additional iteration on the value

function takes a long time to complete. If this is the case, the remainder of this

section is for you. . .

As we saw with the code ConvergeGraph.m, we required 66 iterations before

Vj+1 was close enough to Vj for us to consider that the function had ‘converged’.

What’s more, in this code, we define ‘convergence’ as a situation where ||Vj+1−
Vj || < 0.01. Were we to set a more rigorous convergence criterion (which we

control in the second line of ConvergeGraph.m), we will require (perhaps many)

more iterations to solve the problem.5

One particularly useful alternative manner to solve this problem is the so-

called Howard Improvement Algorithm or policy function iteration (Sar-

gent, 1987). Rather than iterate to calculate the value function, and then from

5 For example, setting a convergence criterion of 1e-6 means that our problem now takes 153
iterations to converge.

133

this the policy function (figure 7.3b), the Howard Improvement Algorithm alows

us to directly solve for the policy function. Fortunately, as we will see, this algo-

rithm typically converges to the true policy function in much fewer steps than

the value function iteration in section 7.1.2.

In broad terms, the policy function iteration looks like the following, where the

process is initialized by setting some initial arbitrary value function Vj = V0,

and defining some stopping criterion ε:

(i) Based upon Vj , determine optimal consumption for each k, giving a pro-

posed ‘policy function’, cj(k)

(ii) Calculate the payoff associated with this policy function, u(cj(k))

(iii) Calculate the value of following this policy function forever, Vj+1

(iv) If ||Vj+1 − Vj || < ε stop, or else return to step (i) for another iteration

The increase in the efficiency of this routine comes from calculating a value

function associated with following the policy function forever in step (iii). In the

traditional value function iterations we’ve been calculating so far, the calculated

policy function is only followed for one period before again iterating to calculate

Vj+1. While policy function iteration generally takes many fewer steps than

value function iteration, there is one computationally heavy step involved in

calculating the value function from the policy function. To see this, consider

solving for the unknown Vj in the following computation6:

Vj = u(cj(k)) + βQjVj

⇒ Vj = (I − βQj)
−1u(cj(k)), (7.8)

where I is the identity matrix, and Q a matrix which keeps track of the capital

stock associated with a given Vj .
7 At each step of (7.8), which corresponds to

item (iii) on the above list, Vj is calculated by matrix left division; this can be

a computationally demanding process.

6 Here we borrow the notation of Judd (1998), and direct you to his discussion on pp. 411–417
should you be interested in further details

7 In the case of a stochastic infinite horizon model, Q acts as a transition matrix describing
the probability of each realisation in the stochastic portion of the model. We do not go into
that here, and refer you once again to resources such as Judd (1998) if you’re interested in
these sort of details.

134

Below we lay out how the above enumerated list would look in Matlab code.

We suspect that by now you will be familiar with many of these commands, so

will spare you a step-by-step discussion, and will leave it to you to examine this

at the command line. We will however point out the use of Matlab’s sparse

routines, given that the matrix Q in (7.8) is made up largely of zeros.

function [V,opt] = Iterate_Policy(V, maxK)

% Iterate_Policy(V, maxK) takes an aribitrary value function

% V and iterates over the policy function c(k). At each step

% it calculates an updated policy function c_j(k), and a

% corresponding value function V_j(k), which is the value of.

% following c_j(k) forever.

%

% see also iterateVF

%==

%=== (1) Parameters

%==

alpha = 0.65; beta = 0.9; theta = 1.2;

grid = length(V);

K = linspace(1e-6,maxK,grid)’;

opt = NaN(grid,1);

%==

%=== (2) Calculate optimal k for V

%==

for k = 1:grid

c = theta*K(k)^alpha-K(1:k);

c(c<=0) = 0;

u = log(c);

[V1,opt(k)] = max(u+beta*V(1:k));

end

kopt = K(opt);

c = theta*K.^alpha-kopt;

u = log(c);

135

%==

%=== (3) Invert k, u to find V_{j+1}

%==

Q = sparse(grid,grid);

for k = 1:grid

Q(z,opt(z)) = 1;

end

TV = (speye(grid)-beta*Q)\u;

V = TV;

return

Having now written an iteration for this policy function improvement step, we

can ask Matlab to loop over this a number of times until our numerical policy

function has converged. Were we to do this at the command line, we would

proceed as below. The first four lines set graphing parameters and graph the

analytical solution, while the for loop iterates over the policy function 7 times,

starting with the defined V0 = 0. Figure 7.4 presents output, and it appears as

if after only 7 iterations we are already very close to the true policy function!

>> cmap = cool(7);

>> V = zeros(1000,1);

>> K = linspace(1e-6,100,1000);

>> aB = 0.65*0.9; theta = 1.2; alpha = 0.65;

>> plot(K, aB*theta*K.^alpha, '-k','LineWidth',3)
>> hold all

>> for l = 1:7

[V,k] = Iterate_Policy(V,100);

plot(K,K(k), 'color', cmap(l,:))

end

>> legend('Analytical', 'Iter 1', 'Iter 2', 'Iter 3', 'Iter 4', ...

'Iter 5', 'Iter 6', 'Iter 7', 'Location', 'NorthWest')
>> xlabel('Amount of Capital')
>> ylabel('Optimal c_t')
>> title('Policy Function Iteration and Optimal Consumption')

136

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

Amount of Capital

O
p
ti
m

a
l
c
o
n
s
u
m

p
ti
o
n

Policy Function Iteration and Optimal Consumption

Analytical

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

Figure 7.4: Faster Convergence to the Policy Function

7.3 Solving for Structural Parameters Using GMM

So far in this and the preceding chapter we have essentially been simulating

models and assuming that we know the relevant underlying structural parame-

ters. We have assumed that we know an individual’s discount rate β, and the

nature of the production technology of the good that the individual or firm is

producing (that is to say we know the parameters γ and θ). For now we will

refer to this group of parameters as Ω:

Ω = (β, θ, γ) (7.9)

While these simulations are interesting and useful to predict behaviour under

a certain parametric representation of the world, often our interest will be in

137

inverting this problem. Rather than assume that we know the true underlying

parameter set Ω and then use this to generate data, frequently we will have

data on household behaviour, and from this will be interested in estimating

these underlying parameters. This is typically the type of problem that we

are used to working with in microeconometrics: that of observing data and

recovering estimates to summarise the underlying data generating process.

So, the question now becomes whether the methods we have been looking at here

lend themselves to microeconometric modelling. Given the title of this book, you

will not be surprised to learn that the answer is a robust ‘yes’. Indeed, Keane

et al. (2011) point out that “[i]t is a truism that any dynamic optimization

model that can be (numerically) solved can be estimated.”

7.3.1 A Brief Introduction to Generalised Method of Mo-

ments

Perhaps the most flexible ways of estimating such models, and indeed a large

range of econometric problems, is by using method of moments, or generalised

method of moments (GMM). Without going into too great detail,8 when using

GMM, we define a number of population moments. These are expressions

which are true in our model.9 We then estimate our parameters using the

principle of analogy. This involves setting the identical sample moments to

zero in our observed draw of data.

Before jumping into GMM with the dynamic models we’ve been simulating

in this and the previous chapter, it’s perhaps worth working through a very

familiar example. To do this, we will return to linear regression, much like the

OLS function we defined to estimate (1.1) way back in Chapter 1.

8 There are many excellent references to turn to if you are interested in further details on
method of moments based estimation. For example, Hall (2005); Cameron and Trivedi
(2005), or for those particularly interested, the original Hansen (1982) article provide more
extensive details.

9 Of which we assume the observed data provides a representative picture.

138

From the basic Gauss Markov assumptions, we have that in the population:

E[ε|X] = 0. (7.10)

From this, we can also show that:

E[Xε] = E[X(y −Xβ)] = 0. (7.11)

We can then use (7.11) to form our sample moment conditions, which gives one

moment for each β parameter in our model. As you may be aware, these sample

moments look like the following:

m =
1

N

�
N�

i=1

Xi(yi −Xiβ)

�
= 0. (7.12)

This vector is what we’ll refer to as our moment vector and will be of dimension

1 × k, where k is the number of independent (X) variables in our model. The

fundamental idea in GMM is that our estimates β̂ should be those values which

drive the weighted quadratic distance mWm� to zero, (or as close to zero as

possible if we have more moments than coefficients)10. For consistent estimation

we simply need to ensure that our weight matrix W is semi-definite positive

(such as an identity matrix), however for efficiency we may be interested in

using other weight matrices such as those discussed by Hansen (1982).

This is all well and good in theory, but how does it actually work in Matlab?

Given that we are attempting to minimise mWm�, you may suspect that our

code will involve minimising some function whose output is this value. If so,

you’d be correct! Let’s have a look at the below function which sets up these

sample moments.

function Q = objective(beta,y,X)

% Q = objective(beta,y,X) calculates the moments of a linear

% regression model given input data y (a vector), X (a matrix

% including an intercept of all ones if desired), and the point

% estimates beta. The true method of moments estimate of beta

% occurs when Q=0.

%

10 We refer to this case as ‘over-identification’.

139

% The series of moments that are being fitted here are:

% [E(X_1*u)=0 E(X_2*u)=0 ... E(X_k*u)=0]

%==

%=== (1) determine sample size N and number of coefficients k

%==

N = length(y);

k = size(X,2);

%==

%=== (2) Calculate u and generate the (arbitrary) weight matrix

%==

u = y - X*beta;

W = eye(k);

%==

%=== (3) Generate moment vector (1*3) in this case

%==

m = 1/N*u’*[X(:,1) X(:,2) X(:,3)];

Q = m*W*m’;

return

This function accepts as arguments our observed y and X data, and a proposed

value for the vector of parameter estimates β̂. As per normal, step through

each line on the command line in Matlab to ensure that you’re comfortable

with the computations carried out, and to ensure that you’re happy that this

function returns a scalar value for Q. Now, to calculate our estimates, all we

need to do is minimise this function. As we have seen in a number of earlier

examples, Matlab has a host of minimisation routines which are perfect for

such calculations.

To test out this code we can return to the auto.csv file we worked with in

chapter 1. Below we load this into Matlab, and estimate β̂ by GMM:

140

>> DataIn = dlmread('auto.csv');
>> X = [ones(74,1) DataIn(:,2:3)];

>> y = DataIn(:,1);

>> [beta,Q] = fminsearch(@(B) objective(B,y,X),[10,0,0]', ...

optimset('TolX',1e-9));

beta =

39.4397

-0.0001

-0.0058

Q =

6.3475e-20

We see above that by minimising this objective function we get very close to

Q = 0, and recover the identical point estimates that we found in previous

trials. You’ll notice that we’ve specified some particular optimisation settings

in our call to fminsearch. In any estimation such as this it’s very important to

carefully set our minimisation criteria. For example, try estimating without this

setting. Do you recover the correct point estimates? Fortunately, we have a very

safe way to know when our optimisation settings are ‘sensitive enough’ in this

case. Given that each sample moment should be asymptotically equal to 0, our

weighted result Q should also be approximately 0. In any situation where Q � 0,

we’ll have reason to think that our GMM estimates have not been successful in

setting the sample moments equal to zero, and that our optimisation settings

likely need fine tuning.

Exercise: The above code has estimated β using just-identified GMM. However,

in this case, we could also consider estimating via tradition method of moments,

which simply involves setting each moment exactly equal to zero rather than

minimising the quadratic distance. How would you code a method of moments

estimator for β in Matlab? Hint : The fsolve function may be useful in this

case.

141

7.3.2 Applying GMM to Our Dynamic Model

The dynamic models which we have been generating and simulating in this and

the previous chapter are entirely amenable to estimation in a similar way via

GMM. While parameter estimates in a linear regression model can be generated

by forming moments based on the Gauss-Markov assumptions, our dynamic

models can be estimated if we believe that we can make reasonable assumptions

about expectations of the stochastic elements of these models.

Perhaps the trickiest part of this process is in motivating and justifying specific

moment conditions. To fix ideas in our heads, we will return to the example we

have been using all along of a producer/consumer with log utility. Specifically,

we will return to the example we have discussed in section 6.4 of the previous

chapter. If you are yet to go through this section, however, there is no need to

despair. We will simply ask you to convince youself that this example results

in observations of the “true behaviour” of 100 individuals based upon their

realisations of stochastic shocks εt at each point in time. Note that although

we did simulate this data, from here onwards we will just be acting as if this

were real data which we received as researchers considering a particular type

of microeconometric issue. Importantly, this implies that we do not know the

true data generating process, the values of all parameters in this process, or the

nature of the stochastic elements in this ‘world’.

Method of moments estimation starts with an assumption that something in

the population is equal to zero. Let’s assume that we have reason to believe

that the expected value of the stochastic error term is zero in each period:

E[εt] = 0 ∀ t. (7.13)

You will note that this is simply an assumption about one moment (the mean of

a parameter) in the real world. Here we simply assume that we know something

about the mean of this unobserved term, and do not assume that we know

anything else about its distribution.11

11 This is, perhaps, one of the nicest things about method of moments based estimation.
Rather than making a full distributional assumption regarding the nature of the error term,
we just make an assumption about one meaningful point in the distribution. This is less
demanding than what we have been assuming in earlier estimation techniques where maxi-
mum likelihood was used based upon a distributional assumption. We return to this point
in section 7.3.3.

142

Let’s also assume that we know the general form of the problem. We’ll imagine

that we know that our agent is a utility maximizer, subject to a stochastic flow

equation for capital:

max
{ct}T

t=1

T�

t=1

βt−1u(ct) subject to kt+1 = f(kt, ct) + εt+1. (7.14)

Now, by combining (7.13) with (7.14), we have immediate candidates for mo-

ment conditions. The first comes from simply rearranging the capital flow equa-

tion, expressing in terms of ε, and taking expectations of both sides. The second

comes from the Euler equations. These state that the marginal rate of substi-

tution of consumption between periods should be equal to the marginal return

of saved capital. These moment conditions look like the following12:

E[kt+1 − f(kt, ct)] = 0 (7.15)

E
�

u�(ct)
βu�(ct+1)

− f �(kt)

�
= 0. (7.16)

With population moment conditions in hand, we can now fit the sample analogue

of these moments using our ‘data’ on the 100 individuals we simulated earlier.

Our goal is to estimate the parameters of the production technology f(kt, ct).

We start by assuming (correctly) that the functional form for utility is ln(ct),

and the for production is θ(ct − kt)
α.13 Ideally then, we’d like to form these

moments, and estimate Ω̂ from equation (7.9). Unfortunately however, we will

find we still have a problem were to try to do this. Typically in dynamic models

like the one we are working with here, the discount factor β is not identified

without placing strong restrictions on other primitives in the model.14 Normally

then, we will assume some plausible value for β, plug this into our estimation,

and based upon this assumption be able to identify the remaining parameters.

Let’s try setting up these moment conditions in Matlab:

12 Or, with our assumed functional form that f(kt, ct) = θ(kt − ct)α + ε, they look like:

E[kt+1 − θ(kt − ct)
α] = 0

E
�
ct+1

βct
− αθ(kt − ct)

α−1

�
= 0.

13 This functional form also allows for the flow equation we used in the earlier case that
kt+1 = kt − ct.

14 We will not go into this here, however an exposition can be found in Rust (1994a,b).

143

function [Q] = dynamicMoments(ct,ctp,kt,ktp,params)

% dynamicMoments(ct,ct+1,kt,kt+1,params) returns the quadra-

% tic distance (scalar) based on dynamic model moments and

% specified values of alpha and theta

alpha = params(1);

theta = params(2);

beta = 0.9;

k = size(params,2);

%==

% Form moments

%==

m1 = mean([ktp - theta*(kt - ct).^alpha]);

m2 = mean([(ctp./(beta*ct))-alpha*theta*(kt-ct).^(alpha-1)]);

%==

% Create weight matrix and quadratic distance

%==

W = eye(k);

Q = [m1 m2]*W*[m1 m2]’;

return

You’ll probably notice a few things that we’re doing here. Firstly, the moments

m1 and m2 are based on the functional form outlined above, and we’ve assumed

a value for β. Secondly, we’re forming only two moments here. You will note,

however, from (7.13) that we have assumed that ε = 0 in each of our T time

periods, meaning that we could create an overidentified system of moments. We

leave this case as an exercise below.

So, to estimate we’ll consider just arbitrarily choosing data from one time pe-

riod and using method of moments. We’ll start by re-simulating our ‘sample’

data, and then use fminunc—Matlab’s unconstrained minimisation routine—

to minimize our objective function Q(Ω):

144

>> finiteStochastic;

>> simulateStochastic;

>> opt = optimset('TolFun', 1E-20, 'TolX', 1E-20);

>> [Omega, Q] = fminunc(@(p) dynamicMoments(con(:,4),con(:,5),...

kap(:,4),kap(:,5),...

p),[1, 1], opt);

Omega =

0.9832 1.1895

Q =

2.7558e-08

Perhaps as expected given our somewhat ‘serendipitous’ set of assumptions, we

see that this estimation technique works well to recover estimates for α and θ.

Our estimates of 0.9832 and 1.1895 are close to the true population values of

0.98 and 1.20, and we’ll let you check whether you can improve these by using

a larger set of moment conditions to estimate.

Exercise: In the above example we estimated α̂ and θ̂ by using two moment

conditions based upon ε5. Generalise this GMM estimation so that rather than

using two conditions you use all the (T-1)*2 moments available from εt.

7.3.3 Final Thoughts on Estimation

Before closing this chapter we think it’s worthwhile to briefly discuss a few

additional points on estimating these dynamic models. Firstly, although we

motivate estimation via GMM in this chapter, there is nothing in this frame-

work which suggests that this must be the only (or indeed even the best) way

to estimate these models. Alternative ways to estimate these models include

method of simulated moments (MSM) techniques, and even techniques which

do not involve defining moments at all, such as maximum likelihood. While

145

techniques based around full distributional assumptions such as ML are liable

to be less accurate if these assumptions turn out not to hold in reality, in many

cases these assumptions will already be built into the structure of our model,

meaning that ML is an entirely reasonable and efficient estimation technique.

This brings us to a more general point about these ‘structural’ estimation tech-

niques. While a more structural approach allows us to pursue highly ambitious

questions which may be outside the scope of reduced form estimation tech-

niques, the assumptions which we require to estimate these models are gener-

ally much stronger (hence the emphasis on structure!). We won’t belabour this

point too much, as it is partially outside the scope of a book on computational

and microeconometric methods, and especially one of this length. However,

we do encourage you to experiment with the code in this chapter to see how it

performs under alternative (and less serendipitous) assumptions regarding func-

tional form, discount rate, and so forth, and certainly to turn to more expert

opinion if you are interested, such as Keane et al.’s (2011) handbook chapter,

and their excellent closing remarks on “how credible are DCDP models?”.

146

7.4 Review

command brief description

linspace A linearly spaced vector based of (user-defined) values
hot A colourmap of black, red and yellow for use in visual outputs
fsolve Solves a system of equations
sparse Store sparse matrix in a computationally more efficient way
speye A sparse identity matrix, with only the diagonal stored in

memory
legend Add a legend to a plot

Table 7.1: Chapter 7 commands

7.A Analytically Iterating the Value Function

In what follows, we use Vj to signify the value function, where the subscript

j ∈ [0,∞) represents the iteration on the value function. Importantly, this

number does not have any link to time periods, simply telling us how many

times we have iterated over V , and hence how close we are to our solution.

From Stokey and Lucas (1989) we know that under a relatively innocuous set of

assumptions, the contraction mapping theorem implies that as j → ∞, ΓV → V

(or that our value function will converge). To start the iterations we define an

initial value function15:

V0(k) = 0 ∀ k.

We treat V0 as a proposed solution, where a proposed solution is only verified

as the true solution if it is determined that Vj+1 = Vj , otherwise Vj+1 becomes

the new proposed solution, and iteration continues. So, starting from V0 the

first iteration is defined by maximising the functional equation:

V1(k) = max
k̃

{ln(c) + βV0(k̃)} s.t. c = θkα − k̃. (7.17)

Here we use k and k̃ to denote capital in the current and subsequent periods

respectively. In this case given that for all k the value of V0 will be 0, it is optimal

to consume all capital, giving a utility maximising consumption of c∗ = θkα.

15 This is arbitrary in the sense that starting the iteration from any resolvable value function
will still lead us to the true solution.

147

Substituting this optimal solution into our value function (7.17) gives:

V1(k) = ln(c∗) + βV (k̃∗)

= ln(θkα) + β0

= ln θ + α ln k, (7.18)

and given that V1(k) �= V0(k) we know that our proposed V0 is not the solution

to the Bellman equation.

Now, having the result from the first iteration, we are able to iterate again, and

continue the process of iteration until Vj = Vj+1, in which case we have arrived

at our solution. For our second iteration we continue as above:

V2(k) = max
k̃

{ln(c) + βV1(k̃)} s.t. c = θkα − k̃. (7.19)

Maximising (7.19) gives us a first order condition of the following form:

1

θkα − k̃
=

βα

k̃
,

which, by rearranging implies that k̃∗ = βα
1+βαθk

α, and substituting into the flow

equation that c = θkα − k̃ gives c∗ =
�

1
1+βα

�
θkα. Substituting these optimal

values back into our value function gives that

V2(k) = ln c∗ + βV1(k̃
∗)

= ln

��
1

1 + βα

�
θkα

�
+ β

�
ln θ + α ln

�
βα

1 + βα
θkα

��

= α(1 + βα) ln k + ln

�
θ

1 + βα

�
+ β ln θ + βα

�
βα

1 + βα
θ

�

= E1 ln k + F1

where in the second line the functional form for V1 comes from (7.18), E1 and

F1 just denote constants, and once again we can verify that V1(k) �= V2(k).

Now, similarly we can iterate again to calculate V3(k):

V3(k) = max
k̃

{ln(c) + βV2(k̃)} s.t. c = θkα − k̃,

= max
k̃

{ln(θkα − k̃) + β[α(1 + βα) ln k̃ + F1]}

148

and here the relevant first order condition for the above equations is:

1

θkα − k̃
=

βα(1 + βα)

k̃
.

Rearranging this FOC gives k̃ = βα+β2α2

1+βα+β2α2 θk
α and c = θkα−k̃ =

�
1

1+βα+β2α2

�
θkα.

We can then substitute these into our value function, giving that V3(k) is:

V3(k) = ln c∗ + βV2(k̃
∗)

= ln

��
1

1 + βα+ β2α2

�
θkα

�
+ β

�
α(1 + βα) ln

βα+ β2α2

1 + βα+ β2α2
θkα + F2

�

= α(1 + βα+ β2α2) ln k + F2

= E2 ln k + F2

where once again E2, F2 just denote constants.16

Here, yet again, we see that V3(k) �= V2(k), however we do start to see a pattern

emerging. Indeed, were we to keep iterating ad infinitum, we would find that for

each iteration j the solution would look like Vj(k) = Ej ln k+Fj . In order to ac-

tually resolve this fully, we could keep iterating, forming V4(k), V5(k), . . . , V∞(k)

as above, or we can take advantage of the algebra of geometric series. For the

first constant Ej , the limit is as follows:

lim
j→∞

Ej = α[1 + βα(1 + βα+ β2α2 + . . .+ βj−1αj−1] =
α

1− αβ
, (7.20)

while for F we can break this down into a number of steps. From F1 and F2 we

begin to see that the general form of Fj is:

Fj = ln

�
θ

1 + βα+ . . .+ βj−1αj−1

�
+ β ln

�
θ

1 + βα+ . . .+ βj−2αj−2

�
+ . . .+ βj−1 ln θ

+βα(1 + βα+ . . .+ βj−2αj−2) ln

�
βα+ . . . βj−2αj−2

1 + βα+ . . . βj−2αj−2
αβθ

�

+β(βα)(1 + βα+ . . .+ βj−3αj−3) ln

�
βα+ . . . βj−3αj−3

1 + βα+ . . . βj−2αj−2
αβθ

�

+ . . .+ βj−2(βα) ln

�
1

1 + βα
αβθ

�
.

16 If you wish to do the algebra for F2, feel free! If your algebra is correct (and we haven’t

made any mistakes) you will find something like: F2 = ln
�

θ
1+βα+β2α2

�
+ β ln

�
θ

1+βα

�
+

β2 ln θ + β2α
�

βα
1+βα

θ
�

+ βα ln
�

βα+β2α2

1+βα+β2α2 θ
�
.

149

This can be simplified into what is essentially two geometric series. The first

line of the above equation as:

lim
j→∞

j−1�

t=0

βt ln

�
1

1 + βα+ . . .+ βj−1αj−1
θ

�
= lim

j→∞

j−1�

t=0

βt ln [θ(1− βα)]

=
1

1− β
ln [θ(1− βα)]

while the final three lines are:

lim
j→∞

j−2�

t=0

βtβα(1 + βα+ . . .+ βj−2αj−2) ln

�
βα+ . . . βj−2αj−2

1 + βα+ . . . βj−2αj−2
αβθ

�

= lim
j→∞

j−2�

t=0

βt βα

1− βα
ln(βαθ)

=
1

1− β

�
βα

1− βα
ln(βαθ)

�
,

in which case we have that

lim
j→∞

Fj =
ln[θ(1− αβ)]

1− β
+

βα ln(βαθ)

1− β
.

Of course, this has been an awful lot of algebra, and we might be concerned

that we haven’t actually found the closed form solution to this value function.

Thankfully we’ve already come across a way we can check this solution: all we

need to do is show that iterating once again on the above value function gives

us an identical value function (a fixed point). Let’s give it a try17...

V∞+1(k) = max
k̃

{ln(c) + βV∞(k̃)} s.t. c = θkα − k̃. (7.21)

As we have done above, we can form the first order condition for (7.21), which

gives:
1

θkα − k̃
=

βα

(1− βα)k̃
.

From here we can rearrange for k̃∗ = βαθkα, and c∗ = θkα(1 − βα). If we

17 And please excuse our abuse of notation in (7.21).

150

substitute these optimal values into our value function we have:

V∞+1(k) = ln c∗ + βV∞(k̃∗)

= ln [θkα(1− βα)] + β

�
α

1− αβ
ln(βαθkα) +

ln[θ(1− αβ)]

1− β
+

βα ln(βαθ)

1− β

�

=
α

1− αβ
ln k +

ln[θ(1− αβ)]

1− β
+

βα ln(βαθ)

1− β

and indeed, we find that V∞+1(k) = V∞(k), indicating that we have actually

iterated onto the true solution.

151

