
Chapter 6

Dynamic Choice on a Finite

Horizon

“The thousand times that he had proved it meant nothing. Now

he was proving it again. Each time was a new time and he never

thought about the past when he was doing it.”

Ernest Hemingway, “The Old Man and the Sea”

6.1 Introduction

The steady march of time casts a pall over many economic decisions. The choice

to do something today may preclude, restrict, encourage or necessitate certain

choices in the future. Among many other areas: searching for work, investing in

human capital, installing or removing physical capital, and choosing a partner

on the marriage market are all decisions which are frequently considered from

a dynamic point of view.

95



While the mathematics behind these dynamic choices are slightly more complex

than traditional single-period optimisation problems we discussed in chapter 2,

the basic idea is—we think—not too much more demanding. When determining

behaviour over a number of periods, a decision maker should aim to equalise

the discounted marginal utility at each point in time. This is analagous to a

consumer’s aim to equalise the cost-adjusted marginal utility of each unit of

consumption in a static environment1. Effectively, while in a static sense we

expect that a consumer could not increase utility by rearranging consumption

between goods, in a dynamic sense we would expect that such an improvement

could not be made by rearranging consumption over time. Indeed, this ‘no-

arbitrage’ type condition has a special name in dynamic optimisation: the Euler

equation. This is a point we return to when setting up our problems and code

in the sections which follow.

The aim of this and the following chapter is not to provide a comprehensive

overview of the theory behind dynamic programming. If you are interested

in such a review, we would suggest having a look at a number of text-book-

length analyses such as that of Adda and Cooper (2003), or chapters of Dixit

(1990) and Acemoglu (2008). We do however aim to provide a number of self-

contained applied examples of dynamic optimisation in Matlab, along with the

corresponding theory behind these situations. While we hope that this will give

you a good foot-hold into programming and thinking about these types of prob-

lems, applications of this type are vast, so further reading (and experimentation

in Matlab!) is likely to be very useful.

6.2 Dynamic Decisions

6.2.1 Household Consumption

To fix the idea in our heads, let’s consider a particular dynamic choice: namely

that of a household deciding how much of a particular endowment to consume.

Given that households exist over various periods of time, and—we assume—aim

1 or likewise, for a firm to equalise the marginal output per cost of physical capital and labour
in typical (static) optimisation problems.

96



to maximise total lifetime utility, this is effectively a dynamic decision. For the

time being we assume that the household is only interested in their utility from

consumption for the next T periods, perhaps because the good will spoil after

this time. We also assume that utility from consumption is additively separable

over time2. This then gives us a familiar utility function of the form:

U =

T�

t=1

βt−1u(ct), (6.1)

where β represents the household’s discount factor.

At the beginning of the first period our household will have some stock of the

good which we will call k1, and which it apportions over time as it sees fit.

Thus, in each of the T periods the household will consume ct, giving us a flow

equation of the form:

kt+1 = kt − ct. (6.2)

This transition equation keeps track of capital, our state variable (think

state=stock). From the above we see that the state in any given period de-

pends only upon the state at the beginning of the period, and the decision the

individual makes with respect to the choice variable, c, (also known as the con-

trol variable). From (6.2) we start to see the dynamics of the optimisation

problem very clearly. The remaining stock of k in a given period depends upon

consumption in the preceding period and the level of k in the preceding period,

which itself depends upon decisions made earlier in life (that is unless we are in

the initial period in which k1 is given). Equations (6.1) and (6.2), along with the

non-negativity constraints ct ≥ 0 and kt ≥ 0 allow us to completely characterise

the household’s (dynamic) problem as:

max
{ct}T

1

T�

t=1

βt−1u(ct) s.t.
�T

t=1 ct + kT+1 = k1

ct ≥ 0 (6.3)

kt ≥ 0.

Here you will notice that we have rearranged the series of flow equations (6.2)

2 This may turn out to be untrue, but we do not entertain this possibility for the time
being. Such an assumption is equivalent to assuming that “the marginal rate of substitution
between lunch and dinner is independent of the amount of breakfast”, an analogy that Dixit
(1990) attributes to Henry Wan.

97



into one equation for ease of presentation (and later ease of computation).

This problem looks remarkably similar to (static) optimisation problems we

have already tackled in earlier chapters of this book. Indeed, if we know the

form of u(ct), the discount factor β, the initial endowment k1, and the number

of periods T , we should be able to resolve this problem reasonably easily by

using Matlab’s fmincon function. Let’s define these and have a look. We’ll

assume for now a log normal utility function u(ct) = ln(ct), 10 time periods, a

discount factor of β = 0.9 and an initial endowment of k1 = 100.

As per normal then, we can consider setting up a Matlab function to minimise.

Consider something along the lines of:

function V = flowUtility(T,Beta,C)

% flowUtility(T,Beta,C) takes T periods of consumption of

% size C (a Tx1 vector), and calculates the total

% utility of consumption assuming an additively separable

% utility function and discount rate Beta.

c = C(:,1);

t = [1:1:T];

V = Beta.^(t-1)*log(c)

V = -V

return

If we pass this function the appropriate parameters it will return to us a scalar

value V, corresponding to total utility from the T periods of consumption. In

the final line of this script you will notice that we convert our (positive) utility

V into a negative value, as although we are interested in maximising utility,

fmincon is a minimisation function.

Having written the function we aim to minimise, and having defined all the

necessary parameters, let’s solve for consumption ct in each period.

98



>> beta = 0.9;

>> T = 10;

>> k1 = 100;

>> lb = zeros(10,1);

>> ub = 100*ones(10,1);

>> guess = 10*ones(1,10);

>> A = ones(1,10);

>> opt = optimset('TolFun', 1E-20, 'TolX', 1E-20, ...

'algorithm', 'sqp');
>> c = fmincon(@(C) flowUtility(T,Beta,C), guess, ...

A, k1, [], [], lb, ub, [], opt)

c =

15.3534

13.8181

12.4363

11.1926

10.0734

9.0660

8.1594

7.3435

6.6091

5.9842

We see here that along with those parameters we defined above (beta, T, and

k1), we pass additional arguments to fmincon. Our non-negativity constraint

for c is defined as a lower-bound (lb) of zero in each of the ten periods, and

similarly an upper-bound is defined, as consumption can never exceed 100 (the

full amount of the endowment) in any period.3 As usual, we pass an initial

starting point to Matlab as the vector guess (somewhat lazily defining this as

equal consumption in all periods). Finally, we set up the flow constraint that

total consumption must not exceed the full endowment k1. We do this using

the vector A, defining that A · c ≤ k1. Remember if at any time you are unsure

of what’s going on in this command, you can consult Matlab’s help files by

3 Strictly speaking, there is nothing which requires us to include ub and lb. These will be
implied by the flow constraint and utility maximisation (respectively). However, it doesn’t
hurt, and is consistent with out so we include it here anyway.

99



typing help fmincon), or working through particular steps at the command

line.

The resulting vector of values shows us expected consumption in each period.

As expected given that β < 1, we see a downward sloping consumption profile,

and we can also confirm that this answer has our household consuming the

entirety of their endowment k1 in line with non-satiation:

>> sum(c)

ans =

100

Sensitivity to Input Parameters In the above example we have made a

number of reasonably particular assumptions upon which our optimal consump-

tion depends. Principally, we have assumed that the (one) household that we are

considering has a particular discount rate, and that their utility from consump-

tion in each period obeys a given functional form. Having written and solved

the above optimisation problem once, there is nothing that stops us from doing

this many times to see how these underlying parameters and primitive functions

affect our results. In the following code we ‘simulate’ consumption over time

for a range of households: those which are remarkably impatient (β = 0.05),

to those which place absolutely no additional weight on their current utility

(β = 1).

%=============================================================

%=== (1) Calculate optimal consumption for 0<Beta<1

%=============================================================

result = NaN(10,20);

for Beta=1:20

beta_use=Beta/20;

result(:,Beta)=fmincon(@(C) flowUtility(T,beta_use,C),...

guess,A,k1,[],[],lb,ub,[],opt);

end

100



%=============================================================

%=== (2) Graphical output

%=============================================================

time = 1:10;

beta = 0.05:0.05:1;

subplot(1,2,1)

plot(time, result, ’LineWidth’, 2)

xlabel(’Time’, ’FontSize’, 12)

ylabel(’Consumption’, ’FontSize’, 12)

subplot(1,2,2)

surf(time, beta, result’)

xlabel(’Time’, ’FontSize’, 12)

ylabel(’Beta’, ’FontSize’, 12)

zlabel(’Consumption’, ’FontSize’, 12)

You’ll notice here that we have effectively solved the problem 20 times, by

generating a for loop. Whilst for loops are not necessarily the fastest way to

write code in Matlab, in some cases this will be the simplest and clearest way

to set-up our code4. After resolving this problem for each of 20 households with

differing degrees of patience, we will likely be interested in visualising these

results in some way. We suggest a couple in the second block of the above

code. These outputs are available as figure 6.1. In the left hand figure we

simply present two-dimensional consumption profiles over time for our range

of βs, while the right-hand panel takes advantage of Matlab’s 3-D graphing

capabilities.

Exercise: How do our results depend upon the utility function we specify?

Perhaps this leads you to ask how we can actually determine β (and other

4 This is a point which we will return to extensively in chapter 8, where we discuss the benefits
of vectorisation, how to speed up code via parallelising loops, and a number of other exciting
tricks that Matlab offers.

101



1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Time

C
o

n
s
u

m
p

ti
o

n

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

60

70

80

90

100

Beta

Time

C
o

n
s
u

m
p

ti
o

n

Figure 6.1: Sensitivity of Consumption to Discount Rate

relevant parameters in problems of this type). This is something we will re-

turn to more fully in section 6.4 where we discuss taking these microeconomic

concepts—namely dynamic optimisation—and building them into microecono-

metric models. While the programs we have written above have been based

upon a single (or representative) household, we can use the power of Mat-

lab to extend these to microeconometric applications which are based on many

households who face the same optimisation problem, but who may have different

preferences and different discount rates.

So far this entire process hasn’t been too much more difficult than standard

static optimisation. Before getting too excited about this, we should probably

point out that this result is quite artificial for a number of reasons (or perhaps

you are ahead of us here...). Principally, we have been able to reduce the

‘dynamism’ of the problem by rearranging our flow constraints (6.2) into one

simple constraint, as presented in the first line of (6.3). In the subsection which

follows we will relax this, and consider a slightly more realistic example in which

the flow constraints cannot be rearranged into such a nice linear format.

102



6.2.2 A Small Firm

Let’s imagine now that our household from the previous subsection is actually

both a producer and a consumer. We could think of this as being a small

farming household, and so its consumption decisions in one period affect what

it produces in the following periods. Specifically, the flow equation now takes

the form:

kt+1 = f(kt − ct, θ). (6.4)

In this case current production depends upon the stock of k remaining from

the previous period, (and some technology parameter θ which represents an

idiosyncratic time-invariant measure of efficiency). The dynamic nature of the

problem essentially remains the same, as the household/firm should decide how

much to consume each period to maximise its total utility flow. We can then

define the analogous maximisation problem to (6.3):

max
{ct}T

1

T�

t=1

βt−1u(ct) s.t.
�T

t=1 [kt+1 = f(kt − ct, θ)]

ct ≥ 0 (6.5)

kt ≥ 0.

As opposed to the problem in the previous subsection, we can no longer neces-

sarily set up our maximisation problem with one simple linear flow constraint

(as we did with the condition A · c = k1). The constraint on the first line of

6.5 will likely be both non-linear, and have a highly ‘dynamic’ nature. This

dynamism comes about given that high consumption in early periods not only

runs down the stock of k, but also affects the households’ ability to produce

more k in the future.

By defining the functional form of f(·), we can see how this change affects

the setup—and the result—of the problem. Let’s assume, for example, that

production is adequately captured by a Cobb-Douglas specification:

kt+1 = f(kt − ct, θ) = θ(kt − ct)
α. (6.6)

Now, at least without forming a complex and highly recursive equation from

(6.6), setting-up a single constraint is not possible. If we wish to solve this

dynamic maximisation directly using Matlab’s optimisers, we then must form

103



a series of T (non-linear) constraints to account for (6.6) in each period.

Fortunately for problems of this type, fmincon allows us to define and solve

for non-linear constraints. Much as we can form linear constraints of the form

A · c ≤ k1 and Aeq · c = k1, we can form non-linear constraints D(c) ≤ k and

Deq(c) = k. We pass fmincon these non-linear constraints as a function, in

precisely the same way that we have been defining and pointing to the objective

function we wish to maximise. Rather than belabour this point in words, let’s

work through an example below in code:

function [d,deq] = flowConstraint(CK,T,K1,theta,alpha)

% flowConstraint(C,k,T,K1,theta,alpha) sets up the system

% of constraints k_{t+1}=\theta (k_t-c_t)^\alpha. It

% requires CK, a Tx2 matrix of consumption and capital

% values in each of the T periods, K1, the stock of k at

% the beginning of the first period, and the production

% function parameters alpha and theta.

cap = CK(:,2);

c = CK(:,1);

k = [K1; cap];

for t = 1:T

deq(t) = k(t+1) - theta * (k(t) - c(t))^alpha;

end

d = [];

return

We suggest you run through the above code carefully to ensure that it makes

sense to you. There are a number of things going on here, some of which may

not be entirely obvious. For example, it is important to note that non-linear

constraints must return two outputs (which we call d and deq in the first line of

our function). These correspond to strict non-linear equalities, and non-linear

inequalities. Given that (6.4) is a system of T equality constraints, we just define

an empty vector for the inequality constraints d.

104



Try experimenting with the flowconstraint function by passing it the entire

set of arguments. Try situations in which deq equals zero (perhaps where α = 1

and θ = 1) and where deq �= 0. A useful hint : in order to see both outputs (d

and deq) you must request these explicitly from Matlab.

Thus, having defined our non-linear constraints which make production in one

period depend upon remaining capital from previous periods, and having defined

the utility function we wish to maximise in the previous section, we can make

a call to fmincon. As long as you still have the parameters from the previous

example stored in memory (namely beta, T, and k1), we can enter the remaining

code below:

>> theta = 1.2;

>> alpha = 0.98;

>> lb = zeros(10,2);

>> ub = 100*ones(10,2);

>> guess = [10*ones(10,1), [90:-10:0]'];
>> opt = ('TolFun', 1E-20, 'TolX', 1E-20, 'algorithm','sqp',...

'MaxFunEvals', 100000,'MaxIter', 2000);

>> Result = fmincon(@(CK) flowUtility(T,beta,CK), guess,[],[],...

[],[],lb,ub, @(CK) flowConstraint(CK,T,k1,theta,alpha),opt)

Result =

16.5011 91.7125

15.9856 83.3386

15.5165 74.8041

15.0944 66.0245

14.7213 56.9014

14.4010 47.3159

14.1408 37.1173

13.9543 26.1024

13.8695 13.9624

13.9624 0.0000

105



We see that our optimisation returns to us a two column matrix with T = 10

rows. This two column matrix is our result for CK: consumption and remaining

capital in each period. This is of course precisely what we have asked Matlab

to give us by using the ‘function handle’ @(CK) in the fmincon command.

Finally, perhaps we are interested in producing graphical output rather than

simply having tabular output in the form of columns. We track consumption

and remaining capital in the following graph (and accompanying code). Once

again we see that as expected, all capital is consumed, and, given the particular

technology parameters defined, that our household/firm has an approximately

downward sloping consumption profile.

>> plot(T, Result(:,1), '--r', T, Result(:,2), 'linewidth', 2)

>> xlabel('Time', 'FontSize', 14)

>> ylabel('C_t,k_t', 'FontSize', 14)

>> legend('Consumption', 'Capital Remaining', 'Location', 'NorthEast')
>> title({'Firm Consumption and Investment', ...

'\beta=0.9, \theta=1.2, \alpha=0.98'}, 'FontSize', 16)

>> print -depsc DynamicBehaviour

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Time

C
t,k

t

Firm Consumption and Investment

β=0.9, θ=1.2, α=0.98

Consumption

Capital Remaining

Figure 6.2: Dynamic behaviour of a household firm

106



6.3 Introducing the Value Function

When we resolve these optimisation problems using Matlab’s solvers (the

fmincon function), we are solving for consumption directly, and effecitvely in

one shot. This is what Adda and Cooper (2003) refer to as Direct Attack,

and corresponds to Stokey and Lucas (1989)’s sequence problem. The basic in-

tuition is that Matlab (or indeed you, the Matlab user,) define(s) a vector of

possible values for consumption at each period, and then the optimal outcome

is found by shifting consumption between periods until further utility gains are

exhausted. If we were to solve (6.3) algebraically for the first-order conditions,

we would find that this implies a series of equations:

u�(ct) = βu�(ct+1)

u�(ct) = β2u�(ct+2)

and so forth. These are the Euler equations, and when these hold this suggests

that further gains from rearranging consumption over time may be unable to

be made.

This method of (numerical) direct attack is not the only way to consider resolv-

ing dynamic optimisation in Matlab. We could also consider using Dynamic

Programming. The idea behind dynamic programming is that rather than

solving a complex optimisation which considers consumption in T periods all

at once, we can break this down into a number of much simpler optimisation

problems. Intuitively, from the point of view of the household firm in the final

period, the problem is quite simple: maximise utility given the total amount

of remaining k. Of course, given that k has no value to the household beyond

the T th period (we assume that the good spoils), their optimal behaviour is to

consume all remaining k. Then, having ‘resolved’ for the optimal final period

behaviour, we can consider the consumer’s behaviour in period T − 1. In this

case their goal is maximise the value of current consumption and the discounted

value of future consumption. Given that we know the value of future consump-

tion (we resolved this in the first stage), this is just a matter of how much to

consume in T − 1, and how much to save for T which will then be consumed

optimally. We can then continue this process, moving to period T − 2, where

the decision becomes how much to consume in this period, and how much to

consume in the future (T − 1 and T ). Thus, we solve a series of T optimisation

107



problems which are effectively two period in nature: now and the future.

The important element of dynamic programming is that at each step we can

form a single summary statistic for ‘the future’, which is simply the value of

all remaining capital when consumed optimally. Thus, to solve for any given

period, we must have already solved for ‘the future’. For this reason in dynamic

programming we follow a process of backwards induction: we first solve for the

final period, then for the penultimate which depends upon the final, then for

the second last which depends upon the penultimate and the final, and continue

this until we arrive at the first period. Once solving for optimal behaviour in

each subproblem of two periods, we combine all these optimal subproblems to

find the final solution.

This may all seem slightly abstract, so we will introduce some mathematical

notation, and then see how it works in practice in Matlab. We first introduce

the idea of the value function. This summarises the value to the household of

a given amount of capital, assuming that this capital is used optimally. Whilst

we can’t say much about the value function yet, one thing we do know, is that

the value of any capital which remains beyond the final period is zero, given

that it spoils. This allows us to define the following:

V (kT+1) = 0 ∀ k. (6.7)

Effectively, for for any amount of remaining k after the final period, the future

value flow to the household is zero. This then gives us a place to start for our

backwards inductions. When making their optimal decision in period T , the

household resolves:

V (kT ) = max
cT

{u(cT ) + βV (kT+1)} (6.8)

where kT+1 = kT − cT . Given that we already have our terminal condition from

(6.7), the equation 6.8 can be solved for any kt.
5 This solution is precisely our

value function for period T : that is, it tells us the total value to the household

of entering period T with some amount KT , and then behaving optimally. This

in turn allows us to consider the decision in kT−1:

V (kT−1) = max
cT−1

{u(cT−1) + βV (kT )} . (6.9)

5 The solution for any value of k will be kT = cT . Why?

108



Here we start to see the process of backwards induction emerging. Once we

solve (6.9), we can then move on and solve for VT−2(k), and continue (or in

reality instruct Matlab to continue) until it finally reaches V1(k).

Let’s have a look at how a problem like this would be resolved in practice:

%============================================================

%=== (1) Prompt user to input parameters

%============================================================

Beta = input(’Input Beta:’);

T = input(’Input time:’);

K1 = input(’Input initial capital:’);

grid = input(’Input fineness of grid:’);

K = 0:grid:K1;

V = [NaN(length(K),T), zeros(length(K),1)];

%============================================================

%=== (2) Loop over possible values of k_{t} and k_{t+1}

%============================================================

aux = NaN(length(K),length(K),T);

for t = T:-1:1

for inK = 1:length(K)

for outK = 1:(inK)

c = K(inK)-K(outK);

aux(inK,outK,t) = log(c)+Beta*V(outK,t+1);

end

end

V(:,t)=max(aux(:,:,t),[],2);

end

%============================================================

%=== (3) Calculate optimal results going forward

%============================================================

vf = NaN(T,1);

kap = [K1; NaN(T,1)];

109



con = NaN(T,1);

for t=1:T

vf(t) = V(find(K==kap(t)),t);

kap(t+1) = K(find(aux(find(K==kap(t)),:,t)==vf(t)));

con(t) = kap(t)-kap(t+1);

end

%============================================================

%=== (4) Display results

%============================================================

[kap([1:T],:),con]

subplot(2,1,1)

plot([1:1:T],[con, kap([2:T+1],:)], ’LineWidth’, 2)

ylabel(’Consumption, Capital’, ’FontSize’, 12)

xlabel(’Time’, ’FontSize’, 12)

legend(’Consumption’, ’Capital’)

subplot(2,1,2)

plot([1:1:T], vf, ’Color’, ’red’, ’LineWidth’, 2)

ylabel(’Value Function’, ’FontSize’, 12)

xlabel(’Time’, ’FontSize’, 12)

In order to get a handle on what this code is doing, it’s probably best to start

in section (2). Ignore for the time being the outer loop (which starts with for

t = T:-1:1), and focus on the inner two loops. Here we define a matrix called

aux (in reality a 3-dimensional matrix, but we’ll get to that...), which looks

very similar to the formula to the value function we’ve written down in (6.8)

and (6.9). This is essentially what aux is. It shows us—for each possible entry

value of k—the value to the household of a choosing a particular exit value of

capital (and corrsponding level of consumption). For example, if we enter a

given period with 20 units of kt, the household could choose to consume 20 now

and 0 in the future, 19 now and 1 in the future, 18 now and 2 in the future,

and so forth. So, aux tells us the value for all possible entry values of kt and all

possible exit values of kt+1.

110



Once we’ve calculated this matrix for all possible input and output capital val-

ues, we can calculate the optimal decision for each possible input capital. This

is what we do 3 lines below the aux matrix. The matrix V() tells us the best

possible behaviour for any given kT—for example, were we to arrive to a given

period with kT = 20, we may find that the optimal choice is to consume 5 now,

and save 15 for the future (and so can discard the other 20 possible combina-

tions). You may wonder why we bother doing this for each possible input capital

value. For example, why is it important to know what the household would do if

it were to arrive with 20 units, if in reality it arrives and has 19 units of capital?

The reason why we have to program such a computationally intensive process

is that we won’t know what decisions are made for consumption (and hence

capital) in each period until we completely solve the model, and to be able to

solve the model we must know the what the value function looks like in future

periods.6 We call the vector V the value function because it is a solution for all

possible values of k. While it may not necessarily offer a closed form solution

in the form of an algebraic function, numerically at least Matlab allows us to

calculate the output value for V over some domain of k—precisely the definition

of a function with which we are familiar.

This brings us to the heart of dynamic programming (at least when considering

problems with a finite horizon). When resolving, we must iterate backwards to

solve the model, and only then can we iterate forward to obtain the objective

function. This is why you see two loops involving time (those starting with for

t =...) in the above code. The first of these loops calculates the value function

starting in period T and counting backwards to the first period. Once having

calculated the value function, the second loop determines how much capital to

consume in each period, starting from period 1 and ending in period T. The

reason we must start in period 1 in this case is because this is the only period

where we know with certainty what the beginning capital will be. For example,

in the code in sections 6.2.1 and we know that the initial endowment or stock

of capital was 100. Effectively we need something like this initial condition to

pin down the solution.

Now that we’ve discussed a few of the more cental parts of the above code, let’s

run it and see what happens. In order to test how this compares to a direct

attack using Matlab’s native optimisers, we will use the same values as earlier

6 In the next section we will also discuss another reason why such a process can be useful.

111



when prompted by our code to input the parameters:

>> backwards_induc

Input Beta:0.9

Input time:10

Input initial capital:100

Input fineness of grid:0.25

ans =

100.0000 15.5000

84.5000 13.7500

70.7500 12.5000

58.2500 11.2500

47.0000 10.0000

37.0000 9.0000

28.0000 8.2500

19.7500 7.2500

12.5000 6.5000

6.0000 6.0000

When we compare the consumption values—which are returned as the second

column of the above output—with those calculated from the direct attack in

section 6.2.1, we will note that we have lost some precision. This occurs due to

the fact that here we had to discretise the possible values of kt and kt+1. You

will note that in section (1) of the code we define the possible values of capital

as K = 0:grid:K1;. This allows the household to choose any possible values

between 0 and full amount K1, in steps of size grid. Given that in the above

example we have specified a grid of 0.25, we are losing some precision in our

solution. Depending upon the computational resources you have available, you

may wish to see how this solution changes as we define finer and finer grids over

which to search.7

7 For general interest, with a grid size of 0.05 we find that Result(:,2)’ = 15.3500 13.8000

12.4500 11.2000 10.1000 9.0500 8.1500 7.3500 6.6000 5.9500.

112



1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

C
o
n
s
u
m

p
ti
o
n
, 
C

a
p
it
a
l

Time

Consumption

Capital

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

V
a
lu

e
 F

u
n
c
ti
o
n

Time

Figure 6.3: Resolving dynamic behaviour using a value function

Exercise: In the above code we have solved for a flow equation of the form

kt+1 = kt − ct. Modify the code to solve for kt+1 = θ(kt − ct)
α (and confirm

that this is correct by referring to the results from section 6.2.1). A useful hint:

this can be incorporated into the above code with two fairly minor changes.

Concentrate only on the formulas which define consumption (c and con).

6.3.1 Computational Accuracy, Curse of Dimensionality

and Memoization

In the above example we have seen that the accuracy of the solution of these

types of problems depends upon the grid size we ask Matlab to search over.

Of course, if we want a highly accurate solution, we could just specify a very

fine grid, such as an increment of 0.001. The problem with such an approach

113



however, is that this will very quickly become quite demanding on the processing

capacity of many personal computers unless we are quite careful about the way

we write our code (and not long after, even if we are quite careful).

The main bottleneck in this code comes about as we need to calculate an in-

termediate step for each possible capital pair combination (as we see in the aux

matrix in the last code example). For example, if we specify a grid search of

0.1 (which allows us to calculate optimal consumption to one decimal place),

we see that:

>> size(aux)

ans =

1001 1001 10

Similarly, when we try with a grid size 0.01, we have that size(aux)=10001

10001 10, and were we patient (or brave?) enough to try with a grid size of

0.001, we would be dealing with a matrix with 100 billion individual elements.

Whilst perhaps we would be willing to accept waiting a reasonable amount of

time to solve this one problem very accurately, it is unlikely that we could afford

such a luxury if we were resolving this for many households (rather than one),

or if rather than dealing with one state variable we were dealing with multiple.

Such a situation is well known in Dynamic Programming, and was labelled the

curse of dimensionality by Bellman (1957) when introducing the principles

we’ve laid out above. Whilst we will not delve too deeply into solutions to

this problem here, we will provide some discussion of alternative optimisation

techniques in chapter 7, and refer the interested reader to the large body of

work on dynamic optimisation and interpolation, perhaps starting with Keane

and Wolpin (1994) or the text-book exposition of Adda and Cooper (2003).

Given the somewhat demanding form in which we have resolved the above dy-

namic programming problem, we likely want to avoid solving it repeatedly were

we to use this in microeconometric applications with various individuals. Mat-

lab, and computational-based numerical solutions in general, offer a way to do

precisely this. Memoization (Michie, 1968) refers to the process of ‘remem-

114



bering’, rather than re-computing, results for use in subsequent analysis. As

Michie suggests, “It would be useful if computers could learn from experience

and thus automatically improve the efficiency of their own programs during ex-

ecution. A simple but effective rote-learning facility can be provided within the

framework of a suitable programming language”. Above in step 2 of our code we

entirely solve the problem for any possible starting value and finishing value of

capital in each period. Only once we have completely solved this problem (and

stored all possible solutions in aux and V!) do we actually determine what the

household does when starting with a capital value of k1 = 100. However, if we

suddenly become interested in a household whose k1 = 50, we have memoised

our solution from step 2, so need to do no further backwards induction. Simi-

larly, if our household unexpectedly receives an additional amount of capital in

between periods 3 and 4, we simply follow our memoised solution, avoiding the

main cost of calculation. We will see the importance and flexibility of such a

situation below, where we consider stochastic dynamic programming.

6.4 Shocks, Uncertainty, and Microeconomet-

rics

Having gone through the above code and discussion, this more or less gives us

the tools required to set up any finite horizon dynamic programming problem.

Perhaps the most obvious remaining question is how to build stochastic elements

into these types of problems. Almost all economic processes are stochastic in

some sense, whether it be due to uncertainty about what will happen to state

variables like capital in future periods, uncertainty about what the decision

maker will want to do in future periods, uncertainty in external parameters

and events, measurement error in observational data, and so forth. Indeed,

microeconometrics is entirely based upon the existence of unobservable elements.

Once we try to fit these dynamic models to data, such an extension will be

fundamental, as in real data, there will be shocks to a dynamic process.

The problems we have looked at so far have all been deterministic in the sense

that we knew with certainty what the decision maker would face in future peri-

ods. For example, in the household consumption example we knew that future

capital would just be current capital minus current consumption, while in the

115



firm example we knew that capital—our state variable—follows a Cobb-Douglas

process: kt+1 = θ(kt−ct)
α. A much more relasistic situation might be one where

future capital follows something like the aforementioned process, but which is

subject to positive or negative shocks.

Let’s imagine for the moment that evolution of capital is subject to a stochastic

shock, so our transition equation (6.6) is now revised as:

kt+1 = f(kt − ct, θ, εt+1) = θ(kt − ct)
α + εt+1. (6.10)

Here ε could be thought of as an unknown return on investment, which is only

resolved in the subsequent period. However, at moment t, the decision maker

will be entirely aware of current kt, all technology parameters, and we assume,

the distribution of possible εt+1 (and hence kt+1).

Now, rather than deciding between consumption now and consumption in the

future, the decision must be framed in terms of consumption now and expected

consumption in the future. This suggests a re-writing of the dynamic program-

ming problem as:

V (kt) = max
ct

{u(ct) + βE[V (kt+1)]} (6.11)

where kt+1 is represented in (6.10), and the expectation is taken over the dis-

tribution of εt+1.

In previous sections, we have illustrated these concepts by assuming certain

vaules and functional forms for our key parameters and functions. Similarly,

here we will assume a reasonably simple structure for the ε term. Specifically,

we assume that ε takes two possible states: low and high. We will assume that

each state occurs with a probability of 1
2 , and that returns in each case are

ε ∈ {−2, 2}.8 Hence, we can effectively fully characterise the stochastic portion

of this problem with two vectors: a vector of returns: [-2, 2], and a vector of

probabilities [0.5, 0.5]. Of course, were we to enter these vectors into Matlab,

finding the expectation of ε should be a relatively straightforward process.

Now, with the incorporation of stochastic elements into the optimisation prob-

8 For those interested in a more extensive discussion of modelling stochastic processes with
dependence in dynamic systems, we point you to any of a multitude of resources which
discuss the Markov property and Markov chain for shocks. Stachurski (2009) for example
provides a very nice overview.

116



lem, we should rewrite the backwards induction to allow us to compute the

value function V for each possible future value of k at each time period. Fun-

damentally, this involves an additional step, as rather than just having that

kt+1 = θ(kt − ct)
α, we have that E[kt+1] = θ(kt − ct)

α +
�J

j πj × εt+1,j , a

formula we translate to Matlab in the line which calculates EnextK.

clear; clc

%==============================================================

%=== (1) Setup parameters

%==============================================================

epsilon = [2 -2]; PI = [0.5 0.5];

Beta = 0.9;

alpha = 0.98;

K1 = 100;

grid = 0.2;

T = 10;

theta = 1.2;

K = 0:grid:K1+max(epsilon);

V = [NaN(length(K),T), zeros(length(K),1)];

aux = NaN(length(K),length(K),T);

%==============================================================

%=== (2) Loop over possible values of c, k and epsilon

%==============================================================

for t = T:-1:1

fprintf(’Currently in period %d\n’, t)

for inK = 1:length(K)

for outK = 1:inK

c = K(inK)-(K(outK)/theta)^(1/alpha);

EnextK = theta*(K(inK)-c)^alpha+epsilon*PI’;

position = round(EnextK/grid + 1);

aux(inK,outK,t) = log(c)+Beta*V(position,t+1);

end

end

V(:,t)=max(aux(:,:,t),[],2);

end

117



Following on from the earlier code that we have gone through, much of the

above looks similar, but there are two additional lines in the second block of

code. Firstly, the line EnextK ... which we alluded to above. You’ll note that

the difference here is that we take the expectation ε by multiplying the matrix of

possible shocks (ε) by the transpose of the probability of a given shock occurring

(π). Secondly, we add a line to ensure that this predicted kt+1 value will lie in

the future value function. Given that we do not necessarily want to restrict the

values of ε and π in any way, but we do need to limit the state space for ease of

computation, position just rounds E[kt+1] to the closest value in our capital

grid. In dynamic problems with continuous state variables, discretisation steps

such as this are necessary for computation.

If we run the above code in Matlab, this calculates the value function at each

of the (ten) time periods, and for each possible (optimal) capital–consumption

pair. Having run this once, we can save these results (that is to say memoise

the above function), and then consider particular realisations of the shocks, and

the resulting consumption paths. As a decision maker’s particular consumption

path depends upon the values of ε at each point in time, there is not one

optimal result. In the below code we consider 100 different individuals, and

specific draws from the distribution of ε.

%=============================================================

%=== (1) Setup parameters, simulate shocks

%=============================================================

people = 100;

epsilon = randi(2,people,T+1);

epsilon(epsilon==1) = -2;

vf = NaN(people,T);

kap = [K1*ones(people,1) NaN(people,T)];

con = NaN(people,T);

%=============================================================

%=== (2) Determine consumption based on simulated shocks

%=============================================================

for p=1:people

118



for t=1:T

position = round(kap(p,t)/grid+1);

vf(p,t) = V(position,t);

kap(p,t+1) = K(find(aux(position,:,t)==vf(p,t)));

con(p,t) = theta*kap(p,t)^alpha-kap(p,t+1);

kap(p,t+1) = kap(p,t+1)+epsilon(p,t+1);

end

end

%=============================================================

%=== (3) Output

%=============================================================

plot([1:1:T], con)

ylabel(’Consumption’, ’FontSize’, 12)

xlabel(’Time’, ’FontSize’, 12)

title(’Simulated Consumption Paths’, ’FontSize’, 16)

figure(2)

hist(sum(con,2))

title(’Lifetime Consumption’, ’FontSize’, 16)

Here we calculate each person’s actual outcome for consumption (con), capital

(kap) and the resulting value function (vf) at each point in time. The loop in

the second block of code outlines the optimal decision for each firm. Starting

at period 1 (and k1 = 100), the optimal future value function is calculated

(from our memoised V), which implies the optimal consumption and optimal

capital with which to exit the period. Then, prior to making the decision in the

following period, the shock ε is realised, giving the actual capital the decision

maker has to work with.

Figure 6.4 describes these optimal consumption paths for our 100 simulated

decision makers. As you would perhaps expect, in period 1 (where each firm

has the same capital endowment) all firms decide to act in precisely the same

way. In following periods however, depending on the actual realisations of ε

(and hence k), optimal behaviour diverges.

119



1 2 3 4 5 6 7 8 9 10
8

10

12

14

16

18

20

C
o

n
s
u

m
p

ti
o

n

Time

Simulated Consumption Paths

Figure 6.4: Simulated Consumption in a Stochastic Model

130 135 140 145 150 155 160 165 170
0

2

4

6

8

10

12

14

16

18

20

Lifetime Consumption

Figure 6.5: Total Simulated Consumption in a Stochastic Model

120



6.5 Review

Command Brief Description

subplot Display multiple graphs on one output
input Prompt user input from the keyboard
find find location(s) of exact coincidence in a matrix
print print to disk the item currently in graphical memory
clc clear results screen
figure output various figures in a Matlab script

Table 6.1: Chapter 6 commands

121


