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Generally, determining the size and magnitude of the omitted variable bias (OVB) in regression models is
challenging when multiple included and omitted variables are present. Here, | describe a convenient OVB
formula for treatment effect models with potentially many included and omitted variables. I show that
in these circumstances it is simple to infer the direction, and potentially the magnitude, of the bias. In a
simple setting, this OVB is based on mutually exclusive binary variables, however I provide an extension
which loosens the need for mutual exclusivity of variables, deriving the bias in difference-in-differences

number of included and excluded “treatment” indicators.
© 2018 Elsevier B.V. All rights reserved.

1.

Introduction

The omitted variable bias (OVB) is a staple of econometrics

courses, and applied research across all fields of economics, ap-
pearing as early as Theil (1957). In its most basic form, the omission
of a single relevant explanatory variable in a linear model leads to
an elegant bias formula providing a simple link between param-
eter estimates, true values, and underlying relationships between
variables. This formula is often amenable to analysis using intuition
from economic models. However, once outside a simple text-book
case of a single included and excluded independent variable, the
OVB can become increasingly complex, such that inferring even the
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direction of bias is impractical in models with multiple included
and excluded variables (Clarke, 2005).!

In this paper I provide a convenient representation of the OVB
in a model with arbitrarily many included and omitted variables,
and an intuitive link to the underlying data generating process
(or treatment assignation). The convenience of this representation
comes at the cost of the class of models for which it serves. This
representation is provided for models based on a series of mutually
exclusive binary “treatment” variables. After documenting the bias
for a case where potentially many treatment variables are included
and excluded in a linear model, I then provide an extension to
a more complicated setting: the difference-in-differences model.
In this setting, while treatment effect indicators may be mutually
exclusive among themselves, common fixed effects (e.g. for time)

1 Greene (2002, p. 180) states: “if more than one variable is included, then
the terms in the omitted variable formula involve multiple regression coefficients,
which themselves have the signs of partial, not simple, correlations. ... This require-
ment might not be obvious, and it would become even less so as more regressors
were added to the equation”.


https://doi.org/10.1016/j.econlet.2018.10.035
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2018.10.035&domain=pdf
mailto:damian.clarke@usach.cl
https://doi.org/10.1016/j.econlet.2018.10.035

D. Clarke / Economics Letters 174 (2019) 84-88 85

are shared. I document in this case that the simple OVB formula
holds, and follows the same logic as in static models.

While this is a restrictive model, it is nonetheless frequently
observed in empirical applications. Models designed to estimate
treatment effects with multiple treatment statuses - where a pop-
ulation is split into various treatment groups and a control group -
are often encountered. A number of such cases are found in Kremer
(2003) and Banerjee et al. (2007), (these are referred to as “cross-
cutting designs” in Duflo et al. (2007)) and also in fields beyond
economics, including medicine (Baron et al., 2013). This is partic-
ularly relevant where concerns exist about imperfect observation
of treatment status, for example where treatment externalities
occur (Miguel and Kremer, 2004), or where environmental shocks
diffuse over space (Almond et al., 2009). Finally, the OVB derived
here extends to any model based on mutually exclusive (or largely
mutually exclusive) binary independent variables, such as fixed-
effect models. In the discussion section of this paper, I describe
a wider set of circumstances in which models of this type are
encountered in a range of fields of the economic literature, and also
lay out a benefit of consistently deriving these biases using the OVB
formula; namely, the ability to extend to an even wider range of
models, such as those where treatment measures are continuous
rather than binary.

2. The traditional omitted variable bias in linear models

To illustrate the traditional OVB model, consider a correctly
specified model of the form:

y=XiB1 +X28, +¢ (1

Here the independent variables X = [X; X;] are split into two
matrices. The X; matrix consists of 1+ k; variables (a constant plus
kq other variables) and X, consists of k, variables. The error term ¢
in the full model is orthogonal to each column of X. Throughout this
paper matrices are denoted in upper-case letters, while particular
variables are denoted in lower-case.

If the dependent variable y is regressed only on X; the expecta-
tion of the OLS estimator of the parameter f; is:

E[BSIX] = Br + (X X1) "X X2 2. )

This is the well-known OVB formula. The bias term of (X;X;)™'X]
X> B, is sometimes written as 88, where § = (X;X1)7'X;X; is a
(14kq) x ky projection matrix from the regression of each variable
in X, on the full set of X; variables. This “textbook” OVB has a very
simple interpretation in the case where k; = 1and k, = 1: itis the
product of the simple correlation between variables x; and x; (§)
and the direct effect of omitted x, on y in the population model (5;).
However, this formula can quickly become unwieldy when k; > 1
as each element of the ﬂ;’"b vector differs from S; in expectation
depending on the partial correlation between the relevant variable
in X;, conditional on the remainder of X;. Economic models and
intuition often have less to say about partial correlations between
(potentially many) variables.

3. A convenient omitted variable bias formula for treatment
effects models

Consider now model (1), where each element of X is a binary
variable. This is what we refer to here as a treatment effect model
which examines the impact of multiple “treatments” on an out-
come of interest. Further, assume that each variable is mutually
exclusive. Such a model is common when a pool of subjects are split
into various treatment groups and a control group, each receiving
at most one treatment. While this mutual exclusivity assumption
may appear limiting, it is actually more flexible than it appears,
as receipt of multiple treatments can be considered a treatment

unto itself.? In this case, we can show that the OVB above has a
very convenient and intuitive form, even in cases with an arbitrary
number of included and excluded variables. In Section 4 we discuss
arange of real-world cases from the literature, and discuss how this
model can extend to an even wider set of real-world econometric
settings.

3.1. Asingle omitted variable and included variable

In the simplest case, the true treatment model consists of a
single omitted variable (an N x 1 vector x,) and single included
explanatory variable (an N x 1 vector x;), plus an intercept term.
Such a situation would apply, for example, in a Randomised Control
Trial (RCT) with treatment externalities if a single treatment indi-
cator is included, but no indicator is included to capture treatment
externalities. In such a setting the OVB is easily interpretable as per
Eq. (2), however I briefly document an alternative interpretation
of the bias in this setting, before moving to the more complicated
multivariate setting in Sections 3.2-3.3.

Consider the bias term of Eq. (2). This can be further simplified
if we resolve the matrix product (X;X1)™'X; X282 = §B,. Given that
each of x; and x; are binary, we denote N, and Ny, as the quantity
of observations for which x; = 1 and x, = 1 respectively. This
gives the following matrices for X;X; and X X,:

/ _ N le ’ _ Nx2
(X]X]) - |:NX1 NX1:| (X]XZ) - |: o |-

Inverting (X;X;) and post-multiplying by (X;X;) gives the matrix of
partial correlations, §, as:
Ny,
N — Ny,
Ny, ’

NN,

and from Eq. (2), we thus express the OVB formula for the included

variable x; as>:

§ =

~1,00b 1 Ny,

EB; " IX] = B] Z(N_NX1>. (3)
In Eq. (3) we add a superscript 1 to 1 to denote that we are display-
ing the bias on the “treatment” indicator x; only, however given
the matrices it is a trivial extension to calculate the bias on the
constant term also. Throughout this paper we consistently report
the bias on the treatment indicators of interest only, relegating
additional algebra and bias on other terms to an online appendix.

This OVB also has a simple interpretation when cast in terms of
the underlying treatment effect models. If x, (a treatment indica-
tor) is omitted from the model, this group will be confounded with
the true controls. Thus, the treatment effect on x; will be biased by
any non-zero impact of x; on y (f8,), multiplied by the degree to
which these x, units dilute the true control group: Ny, /(N — Ny, ).

2 This is laid out explicitly in Duflo et al. (2007) who states “If a researcher is
cross-cutting interventions A and B, each of which has a comparison group, she
obtains four groups: no interventions (pure control); A only; B only; and A and B
together (full intervention)” These four groups are mutually exclusive.

3 Note that as this is a bivariate regression model, this can also be derived using
simply the covariance and variance. We start with the simple bivariate version of
the OVB, and as each variable is binary, the covariance and variance have the closed
form solutions below, where Ny, refers to the quantity of observations for which
both x; = 1and x, = 1 (none). As in (3), this gives:

Cov(x1, %)\ _ (Nuyxy - N — Ny Ny, )/N?
wmw)_m+h( Ny (N — Ny, )/N? )

_ al Ny,
_ﬂl_m(Nfol)'

E@“M:M+m(
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3.2. An arbitrary quantity of omitted and excluded variables

While this simple OVB formula is intuitive, it is more interesting
to be able to generalise this representation to a case with multiple
omitted and included variables, which are much less frequently
amenable to a clear interpretation using the original OVB formula,
and economic logic. For example, in a treatment effects model
based on cross-cutting interventions, if each treatment is subject
to externalities and these are not controlled for, we will be in the
presence of a model with multiple included and multiple excluded
treatment indicators. Let each of the multiple (k) variables in X; be
called x’{Vk =1,..., kq,(aconstantis also included in Xy, implying
that this matrix has 1 + k; columns) and similarly, the (multiple)
k, variables in X; be called x’;Vk =1,..., k.

Given the mutual exclusivity of included treatment indicators
plus a shared constant term, the matrix (X;X;) consists of non-zero
entries on the main diagonal, first column and first row, and zeros
elsewhere. The general class of matrices of this form (arrowhead
matrices) has a simple inverse formula (Najafi et al., 2014), and we
derive the particular inverse (X{Xl)‘l for an arbitrary number of
variables in the Online Appendix. Based on this inverse and (X;X5),
the matrix of partial correlations between omitted and included
variables is solved as:

A A A
Ny N MNe
A A A
S=X X = | Mg Mg N
A A A
Ny N Ne
L A A A

where A = N — N1—N2—-

in the Online Appendlx) Flnally, substltutmg this matrix into the
OVB formula (2) leads to the multivariate generalisation of (3) for
each of the coefficients on the k; included treatment indicators:

E[,Bkovb|X]= k_ﬁ] E _/32 % _ /3 NX’Z(Z (4)
LR W 2\ a A )

where each g5 is the true impact of x§ on y.

We note two things about this OVB. First, it is identical for
each p¥ term. Second, as in the univariate case, this has an in-
tuitive explanation when cast in terms of treatment effects. The
treatment effect on each included variable will be biased by any
non-zero impact of each excluded treatment group (the /3§ terms),
multiplied by the degree that each of these omitted treatment
indicators biases the formation of the control group [N, ;5/ (N—=N, 1=

- N k1 )]. If each omitted treatment effect has the same 51gr1

- N kl (full details are available

as mcluded treatment effects (this may be the case, for example,
in spillovers of environmental shocks), estimated effects will be
universally attenuated. Alternatively, if excluded treatments have
opposite effects to included treatments, estimated effects will be
consistently overstated in magnitude.

3.3. Extension to alternative treatment models

Eq. (4) provides an intuitive solution to the OVB in treatment
effect models with multiple treatments, but only holds under the
somewhat restrictive assumption that each treatment variable is
mutually exclusive. However, the OVB derived above can be logi-
cally extended to other important settings. To see this, we consider

a difference-in-differences model. Consider the correctly specified
model:

Yie = Bo + B1X1 + Ba(Xq - Post); + BsPost;
+v1Xai + y2(Xa - Post)ie + &j (5)

with observations in two periods t € {0, 1}. The variable Post;
takes the value of 1 for all observations in period t = 1 and 0
when t = 0. Units for whom X;; = 1 or X,; = 1 receive treatment,
which switches on only when interacted with the Post-treatment
dummy. Units for whom both X;; = 0 and X;; = 0 are pure
controls. Thus, as is standard in difference-in-difference models,
treatment effects are estimated as the terms on the interaction: 8,
and y,. Baseline differences between treated and untreated indi-
viduals are captured by fixed effects 8; and y4, and any generalised
temporal impacts are captured by the time fixed effect B5. This
multi-group difference-in-differences model is similar to that in
Imbens and Wooldridge (2009).

Suppose we estimate this model, omitting the vectors (X5 -
Post); and corresponding fixed effect X,;. We denote this vector
Xop = [Xai  (X3-Post)i ], and denote thevector Xip = [1 Xy (Xi-
Post); Post;]. We define k; as the quantity of treatment variables
(X7 - Post); in Xip, and k; the quantity of treatment variables in
Xop.? Here, the traditional OVB formula is given as:

E[B*"1X] = B + (X{pXi0) ™ (XipXan)y = B + 87, (®)

where § once again refers to the projection matrix, here of X,p on
Xip. To show that the same type of convenient OVB formula as
in Sections 3.1-3.2 exists for a difference-in-differences model, I
first consider the case of a single included and omitted treatment
variable (and corresponding fixed effects), before extending to the
case with an arbitrary quantity of included and omitted variables.

Although the (X;,Xip) matrix is now more complex than in
the static treatment model, once again we can show that it has a
reasonably simple closed form solution for the inverse, and, conse-
quently, a simple matrix of partial correlations between included
and excluded variables. Given the model’s structure, (X;,X1p) is a
2 x 2 block matrix, and can be inverted (see Online Appendix and
Lu and Shiou (2002)), and post-multiplied by (X;,X2p) to give the
partial correlation matrix as:

NXZt 0
N let

§ = £ Mg N (7

0 _ Xat

N — le[
0 X2t
L N — ler .

As before, N refers to the number of observations, Ny, to those for

X

which (X; -Post);; = 1(i.e. those forwhom X;; = 1in llnteriodt =1),
and Ny, to the quantity for which (X, - Post); = 1. Additionally N;
is equal to the number of observations for which Post; = 1. Putting
this together following Eq. (6) gives the OVB formula for the time-

varying element of a difference-in-differences model as:

NXZr 8
:32 (N[ an) . ( )

Here we observe that the OVB follows virtually the same logic as
in Eq. (3), however now conditional on treatment occurring in the

E[B3IX] =

4 A subscript D is added to these matrices to indicate that they are based on
difference-in-difference models, and so are different to the X; and X, matrices
described in Eq. (1) given that they also include baseline fixed effects and, in the
case of X1p, a time dummy. We use k; and k; consistently to refer to the number of
“treatment effects” of interest.
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second period. The omission of a relevant treatment indicator in
difference-in-differences models biases included treatment effects
by any effect that this treatment indicator has on the outcome
of interest, multiplied by the proportion of the (naive) “control
group” that were actually treated.

Finally, note that this OVB formula can be resolved in this
way even in the extreme case of multiple included and multiple
omitted treatment indicators. An example of a model such as this
is the application of Miguel and Kremer (2004), where two treat-
ment groups each potentially generate their own externalities.
The structure of the time-specific treatment indicators in Eq. (5)
implies that once again (X],X1p) is a 2 x 2 block matrix, and each
block is an arrowhead matrix of dimension (1+ k) x (1+kq). Thus,
each block of the (X],X;p) matrix is invertible, as is the underlying
matrix (full details are provided in the Online Appendix).

In the difference-in-differences model with multiple included
and excluded treatment indicators, the matrix of partial correla-
tions between excluded and included variables is:

N
Nx;t X’;% 0 O
9[ e Ot e
N
_ NX%t _ Xg? 0 0
9[ e 9[ e
N
Ny, I S 0
gt o 9{ e
N
s=| & r (9)
N1 kaz
0 0 _ 2t _ 2t
Or 0;
N
0 O _ Nx;[ _ X;%
O; 0
N
0 0 M4 o
0r 0;
N
o .. o w4
L O O

where 6; = N; —NX} — N,
t

x

- = N . Note that the matrix
1t

t
in Eq. (7) is just a special case of the above, where k; = 1.
Now, to determine the OVB on each included variable we return
to Eq. (6). From this, and the preceding matrices, we have that the
OVB formula on each treatment effect in time-varying (X; - Post);
is:

“Zk,ovb k 1 Nx%t 2 % ky N ,2(%
E[By" " IX1 =By — vy 7 -7 2 2 Vkel, ... k.
t t
(10)

This bias term is once again intuitive in the treatment effects
framework. Here each omitted binary treatment indicator is in-
correctly included in the control group, and hence biases the esti-
mated treatment effects of included variables. This bias consists of
the true treatment effect of non-included treatment variables ()/2")
scaled by the degree to which this treatment group contaminates
the naive control group [N, k /(N[ N, L N 2, T N k1 )]. As

discussed previously, if a researcher has prior mformatlon related
to omitted treatment units, this may allow an even finer considera-
tion of this bias: producing an attenuation if the y* coefficients are

of the same sign as included treatment effects 8, while overstating
the magnitude if excluded and included treatment effects are of
opposite sign.

4. Discussion and conclusion

The Omitted Variable Bias is frequently encountered in eco-
nomics. While it is the base of a range of useful derivations, when
multiple omitted variables are considered in regressions it is often
presented as an ex-post test of model stability (e.g. Gelbach (2016)),
rather than as providing a simple ex-ante formula for determining
parameter bounds.

This paper provides a formula for the OVB which can be used
ex-ante to infer biases in treatment models. It documents a simple
and intuitive link, where the bias owes to the contamination of the
control group with treated units. I show that this holds in simple
static treatment models, as well as in more complicated difference-
in-differences models. This OVB formula provides an uncompli-
cated way to present treatment bounds in models with imper-
fectly observed treatment variables, as are often encountered in
natural experiments, or experiments with imperfect compliance.
One considerable benefit of such a derivation is that it opens a
number of routes to extend this to more complicated models in
other settings. For example, the structure lends itself very well to
a case where rather than binary treatment measures, continuous
treatment measures are applied.

The derivation can serve as both a useful starting point, and as
a benchmark of potential biases in applied settings, encompass-
ing a wide range of real-use cases. This includes, among other
phenomena, (a) the geographic diffusion of treatment through
environmental or social channels, (b) social interaction models,
and (c) general equilibrium estimates and other economic exter-
nalities. These have been encountered in the literature in appli-
cations such as pollutants and climatic conditions (Almond et al.,
2009), information diffusion over space through formal or informal
institutions (e.g. Armand et al. (2017)’s analysis of “the reach of the
radio”), vaccine provision (Manski, 2013), and the spillover of local
economic activity to other markets (Allcott and Keniston, 2018).

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.econlet.2018.10.035.
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