Contents lists available at ScienceDirect







journal homepage: www.elsevier.com/locate/ecolet

# A convenient omitted variable bias formula for treatment effect models $\ensuremath{\overset{\mbox{\tiny \ensuremath{\alpha}}}}$

### Damian Clarke

Department of Economics, Universidad de Santiago de Chile and IZA, Avenida Libertador Bernardo O'Higgins, Estación Central, Santiago, Chile

### HIGHLIGHTS

- The omitted variable bias is commonly used in theoretical and applied econometrics.
- The bias is very difficult to characterise with multiple included/omitted variables.
- I document a simple formula for the omitted variable bias in treatment effect models.
- This holds for an arbitrary number of included/omitted variables.
- Extensions are provided for diff-in-diff models, and to capture externalities.

### ARTICLE INFO

Article history: Received 12 March 2018 Received in revised form 28 October 2018 Accepted 30 October 2018 Available online 3 November 2018

JEL classification: C21 C22 C13 Keywords: Omitted variable bias Ordinary least squares regression Treatment effects Difference-in-differences

### 1. Introduction

The omitted variable bias (OVB) is a staple of econometrics courses, and applied research across all fields of economics, appearing as early as Theil (1957). In its most basic form, the omission of a single relevant explanatory variable in a linear model leads to an elegant bias formula providing a simple link between parameter estimates, true values, and underlying relationships between variables. This formula is often amenable to analysis using intuition from economic models. However, once outside a simple text-book case of a single included and excluded independent variable, the OVB can become increasingly complex, such that inferring even the

E-mail address: damian.clarke@usach.cl.

### ABSTRACT

Generally, determining the size and magnitude of the omitted variable bias (OVB) in regression models is challenging when multiple included and omitted variables are present. Here, I describe a convenient OVB formula for treatment effect models with potentially many included and omitted variables. I show that in these circumstances it is simple to infer the direction, and potentially the magnitude, of the bias. In a simple setting, this OVB is based on mutually exclusive binary variables, however I provide an extension which loosens the need for mutual exclusivity of variables, deriving the bias in difference-in-differences style models with an arbitrary number of included and excluded "treatment" indicators.

© 2018 Elsevier B.V. All rights reserved.

direction of bias is impractical in models with multiple included and excluded variables (Clarke, 2005).<sup>1</sup>

In this paper I provide a convenient representation of the OVB in a model with arbitrarily many included and omitted variables, and an intuitive link to the underlying data generating process (or treatment assignation). The convenience of this representation comes at the cost of the *class* of models for which it serves. This representation is provided for models based on a series of mutually exclusive binary "treatment" variables. After documenting the bias for a case where potentially many treatment variables are included and excluded in a linear model, I then provide an extension to a more complicated setting: the difference-in-differences model. In this setting, while treatment effect indicators may be mutually exclusive among themselves, common fixed effects (e.g. for time)

 $<sup>\</sup>stackrel{\circ}{\sim}$  This research was supported by FONDECYT (grant number 11160200) of the Government of Chile. I thank Serafima Chirkova and an anonymous referee for useful comments which have improved this work.

<sup>&</sup>lt;sup>1</sup> Greene (2002, p. 180) states: "if more than one variable is included, then the terms in the omitted variable formula involve multiple regression coefficients, which themselves have the signs of partial, not simple, correlations....This requirement might not be obvious, and it would become even less so as more regressors were added to the equation".

are shared. I document in this case that the simple OVB formula holds, and follows the same logic as in static models.

While this is a restrictive model, it is nonetheless frequently observed in empirical applications. Models designed to estimate treatment effects with multiple treatment statuses - where a population is split into various treatment groups and a control group – are often encountered. A number of such cases are found in Kremer (2003) and Banerjee et al. (2007), (these are referred to as "crosscutting designs" in Duflo et al. (2007)) and also in fields beyond economics, including medicine (Baron et al., 2013). This is particularly relevant where concerns exist about imperfect observation of treatment status, for example where treatment externalities occur (Miguel and Kremer, 2004), or where environmental shocks diffuse over space (Almond et al., 2009). Finally, the OVB derived here extends to any model based on mutually exclusive (or largely mutually exclusive) binary independent variables, such as fixedeffect models. In the discussion section of this paper, I describe a wider set of circumstances in which models of this type are encountered in a range of fields of the economic literature, and also lay out a benefit of consistently deriving these biases using the OVB formula; namely, the ability to extend to an even wider range of models, such as those where treatment measures are continuous rather than binary.

### 2. The traditional omitted variable bias in linear models

To illustrate the traditional OVB model, consider a correctly specified model of the form:

$$y = X_1\beta_1 + X_2\beta_2 + \varepsilon \tag{1}$$

Here the independent variables  $X = \begin{bmatrix} X_1 & X_2 \end{bmatrix}$  are split into two matrices. The  $X_1$  matrix consists of  $1 + k_1$  variables (a constant plus  $k_1$  other variables) and  $X_2$  consists of  $k_2$  variables. The error term  $\varepsilon$  in the full model is orthogonal to each column of X. Throughout this paper matrices are denoted in upper-case letters, while particular variables are denoted in lower-case.

If the dependent variable *y* is regressed *only* on  $X_1$  the expectation of the OLS estimator of the parameter  $\beta_1$  is:

$$E[\widehat{\beta}_1^{ovb}|X] = \beta_1 + (X_1'X_1)^{-1}X_1'X_2\beta_2.$$
<sup>(2)</sup>

This is the well-known OVB formula. The bias term of  $(X'_1X_1)^{-1}X'_1$  $X_2\beta_2$  is sometimes written as  $\delta\beta_2$ , where  $\delta \equiv (X'_1X_1)^{-1}X'_1X_2$  is a  $(1+k_1) \times k_2$  projection matrix from the regression of each variable in  $X_2$  on the full set of  $X_1$  variables. This "textbook" OVB has a very simple interpretation in the case where  $k_1 = 1$  and  $k_2 = 1$ : it is the product of the simple correlation between variables  $x_1$  and  $x_2$  ( $\delta$ ) and the direct effect of omitted  $x_2$  on y in the population model ( $\beta_2$ ). However, this formula can quickly become unwieldy when  $k_1 > 1$  as each element of the  $\hat{\beta}_1^{ovb}$  vector differs from  $\beta_1$  in expectation depending on the partial correlation between the relevant variable in  $X_1$ , conditional on the remainder of  $X_1$ . Economic models and intuition often have less to say about *partial* correlations between (potentially many) variables.

## **3.** A convenient omitted variable bias formula for treatment effects models

Consider now model (1), where each element of *X* is a binary variable. This is what we refer to here as a treatment effect model which examines the impact of multiple "treatments" on an outcome of interest. Further, assume that each variable is mutually exclusive. Such a model is common when a pool of subjects are split into various treatment groups and a control group, each receiving at most one treatment. While this mutual exclusivity assumption may appear limiting, it is actually more flexible than it appears, as receipt of multiple treatments can be considered a treatment

unto itself.<sup>2</sup> In this case, we can show that the OVB above has a very convenient and intuitive form, even in cases with an arbitrary number of included and excluded variables. In Section 4 we discuss a range of real-world cases from the literature, and discuss how this model can extend to an even wider set of real-world econometric settings.

#### 3.1. A single omitted variable and included variable

In the simplest case, the true treatment model consists of a single omitted variable (an  $N \times 1$  vector  $x_2$ ) and single included explanatory variable (an  $N \times 1$  vector  $x_1$ ), plus an intercept term. Such a situation would apply, for example, in a Randomised Control Trial (RCT) with treatment externalities if a single treatment indicator is included, but no indicator is included to capture treatment externalities. In such a setting the OVB is easily interpretable as per Eq. (2), however I briefly document an alternative interpretation of the bias in this setting, before moving to the more complicated multivariate setting in Sections 3.2–3.3.

Consider the bias term of Eq. (2). This can be further simplified if we resolve the matrix product  $(X'_1X_1)^{-1}X'_1X_2\beta_2 = \delta\beta_2$ . Given that each of  $x_1$  and  $x_2$  are binary, we denote  $N_{x_1}$  and  $N_{x_2}$  as the quantity of observations for which  $x_1 = 1$  and  $x_2 = 1$  respectively. This gives the following matrices for  $X'_1X_1$  and  $X'_1X_2$ :

$$(X_1'X_1) = \begin{bmatrix} N & N_{x_1} \\ N_{x_1} & N_{x_1} \end{bmatrix} \qquad (X_1'X_2) = \begin{bmatrix} N_{x_2} \\ 0 \end{bmatrix}$$

Inverting  $(X'_1X_1)$  and post-multiplying by  $(X'_1X_2)$  gives the matrix of partial correlations,  $\delta$ , as:

$$\delta = \begin{bmatrix} \frac{N_{x_2}}{N - N_{x_1}} \\ -\frac{N_{x_2}}{N - N_{x_1}} \end{bmatrix},$$

and from Eq. (2), we thus express the OVB formula for the included variable  $x_1$  as<sup>3</sup>:

$$E[\widehat{\beta}_{1}^{1,ovb}|X] = \beta_{1}^{1} - \beta_{2} \left(\frac{N_{x_{2}}}{N - N_{x_{1}}}\right).$$
(3)

In Eq. (3) we add a superscript 1 to  $\beta_1$  to denote that we are displaying the bias on the "treatment" indicator  $x_1$  only, however given the matrices it is a trivial extension to calculate the bias on the constant term also. Throughout this paper we consistently report the bias on the treatment indicators of interest only, relegating additional algebra and bias on other terms to an online appendix.

This OVB also has a simple interpretation when cast in terms of the underlying treatment effect models. If  $x_2$  (a treatment indicator) is omitted from the model, this group will be confounded with the true controls. Thus, the treatment effect on  $x_1$  will be biased by any non-zero impact of  $x_2$  on y ( $\beta_2$ ), multiplied by the degree to which these  $x_2$  units dilute the true control group:  $N_{x_2}/(N - N_{x_1})$ .

$$\begin{split} E[\hat{\beta}_1^{1,ovb}|X] &= \beta_1^1 + \beta_2 \left( \frac{Cov(x_1, x_2)}{Var(x_1)} \right) = \beta_1^1 + \beta_2 \left( \frac{(N_{x_1x_2} \cdot N - N_{x_1}N_{x_2})/N^2}{N_{x_1}(N - N_{x_1})/N^2} \right) \\ &= \beta_1^1 - \beta_2 \left( \frac{N_{x_2}}{N - N_{x_1}} \right). \end{split}$$

<sup>&</sup>lt;sup>2</sup> This is laid out explicitly in Duflo et al. (2007) who states "If a researcher is cross-cutting interventions A and B, each of which has a comparison group, she obtains four groups: no interventions (pure control); A only; B only; and A and B together (full intervention)" These four groups are mutually exclusive.

<sup>&</sup>lt;sup>3</sup> Note that as this is a bivariate regression model, this can also be derived using simply the covariance and variance. We start with the simple bivariate version of the OVB, and as each variable is binary, the covariance and variance have the closed form solutions below, where  $N_{x_1x_2}$  refers to the quantity of observations for which both  $x_1 = 1$  and  $x_2 = 1$  (none). As in (3), this gives:

### 3.2. An arbitrary quantity of omitted and excluded variables

While this simple OVB formula is intuitive, it is more interesting to be able to generalise this representation to a case with multiple omitted and included variables, which are much less frequently amenable to a clear interpretation using the original OVB formula, and economic logic. For example, in a treatment effects model based on cross-cutting interventions, if each treatment is subject to externalities and these are not controlled for, we will be in the presence of a model with multiple included and multiple excluded treatment indicators. Let each of the multiple  $(k_1)$  variables in  $X_1$  be called  $x_1^k \forall k = 1, \ldots, k_1$ , (a constant is also included in  $X_1$ , implying that this matrix has  $1 + k_1$  columns) and similarly, the (multiple)  $k_2$  variables in  $X_2$  be called  $x_2^k \forall k = 1, \ldots, k_2$ .

Given the mutual exclusivity of included treatment indicators plus a shared constant term, the matrix  $(X'_1X_1)$  consists of non-zero entries on the main diagonal, first column and first row, and zeros elsewhere. The general class of matrices of this form (arrowhead matrices) has a simple inverse formula (Najafi et al., 2014), and we derive the particular inverse  $(X'_1X_1)^{-1}$  for an arbitrary number of variables in the Online Appendix. Based on this inverse and  $(X'_1X_2)$ , the matrix of partial correlations between omitted and included variables is solved as:

$$\delta = (X_1'X_1)^{-1}X_1'X_2 = \begin{bmatrix} \frac{N_{x_2^1}}{\lambda} & \frac{N_{x_2^2}}{\lambda} & \cdots & \frac{N_{x_2^k}}{\lambda} \\ -\frac{N_{x_2^1}}{\lambda} & -\frac{N_{x_2^2}}{\lambda} & \cdots & -\frac{N_{x_2^k}}{\lambda} \\ -\frac{N_{x_2^1}}{\lambda} & -\frac{N_{x_2^2}}{\lambda} & \cdots & -\frac{N_{x_2^k}}{\lambda} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{N_{x_2^1}}{\lambda} & -\frac{N_{x_2^2}}{\lambda} & \cdots & -\frac{N_{x_2^k}}{\lambda} \end{bmatrix},$$

where  $\lambda = N - N_{x_1^1} - N_{x_1^2} - \cdots - N_{x_1^{k_1}}$  (full details are available in the Online Appendix). Finally, substituting this matrix into the OVB formula (2) leads to the multivariate generalisation of (3) for each of the coefficients on the  $k_1$  included treatment indicators:

$$E[\widehat{\beta}_1^{k,ovb}|X] = \beta_1^k - \beta_2^1 \left(\frac{N_{x_2^1}}{\lambda}\right) - \beta_2^2 \left(\frac{N_{x_2^2}}{\lambda}\right) - \dots - \beta_2^{k_2} \left(\frac{N_{x_2^k}}{\lambda}\right), \quad (4)$$

where each  $\beta_2^k$  is the true impact of  $x_2^k$  on *y*.

We note two things about this OVB. First, it is identical for each  $\beta_1^k$  term. Second, as in the univariate case, this has an intuitive explanation when cast in terms of treatment effects. The treatment effect on each included variable will be biased by any non-zero impact of each excluded treatment group (the  $\beta_2^k$  terms), multiplied by the degree that each of these omitted treatment indicators biases the formation of the control group  $[N_{\chi_2^k}/(N-N_{\chi_1^1} - \cdots - N_{\chi_1^{k_1}})]$ . If each omitted treatment effect has the same sign as included treatment effects (this may be the case, for example, in spillovers of environmental shocks), estimated effects will be universally attenuated. Alternatively, if excluded treatments have opposite effects to included treatments, estimated effects will be consistently overstated in magnitude.

### 3.3. Extension to alternative treatment models

Eq. (4) provides an intuitive solution to the OVB in treatment effect models with multiple treatments, but only holds under the somewhat restrictive assumption that each treatment variable is mutually exclusive. However, the OVB derived above can be logically extended to other important settings. To see this, we consider a difference-in-differences model. Consider the correctly specified model:

$$y_{it} = \beta_0 + \beta_1 X_{1i} + \beta_2 (X_1 \cdot \text{Post})_{it} + \beta_3 \text{Post}_t + \gamma_1 X_{2i} + \gamma_2 (X_2 \cdot \text{Post})_{it} + \varepsilon_{it}$$
(5)

with observations in two periods  $t \in \{0, 1\}$ . The variable Post<sub>t</sub> takes the value of 1 for all observations in period t = 1 and 0 when t = 0. Units for whom  $X_{1i} = 1$  or  $X_{2i} = 1$  receive treatment, which switches on only when interacted with the Post-treatment dummy. Units for whom both  $X_{1i} = 0$  and  $X_{2i} = 0$  are pure controls. Thus, as is standard in difference-in-difference models, treatment effects are estimated as the terms on the interaction:  $\beta_2$  and  $\gamma_2$ . Baseline differences between treated and untreated individuals are captured by fixed effects  $\beta_1$  and  $\gamma_1$ , and any generalised temporal impacts are captured by the time fixed effect  $\beta_3$ . This multi-group difference-in-differences model is similar to that in Imbens and Wooldridge (2009).

Suppose we estimate this model, omitting the vectors  $(X_2 \cdot \text{Post})_{it}$  and corresponding fixed effect  $X_{2i}$ . We denote this vector  $X_{2D} = [X_{2i} \quad (X_2 \cdot \text{Post})_{it}]$ , and denote the vector  $X_{1D} = [1 \quad X_{1i} \quad (X_1 \cdot \text{Post})_{it}]$ . We define  $k_1$  as the quantity of treatment variables  $(X_1 \cdot \text{Post})_{it}$  in  $X_{1D}$ , and  $k_2$  the quantity of treatment variables in  $X_{2D}$ .<sup>4</sup> Here, the traditional OVB formula is given as:

$$E[\hat{\beta}^{ovb}|X] = \beta + (X'_{1D}X_{1D})^{-1}(X'_{1D}X_{2D})\gamma = \beta + \delta\gamma,$$
(6)

where  $\delta$  once again refers to the projection matrix, here of  $X_{2D}$  on  $X_{1D}$ . To show that the same type of convenient OVB formula as in Sections 3.1–3.2 exists for a difference-in-differences model, I first consider the case of a single included and omitted treatment variable (and corresponding fixed effects), before extending to the case with an arbitrary quantity of included and omitted variables.

Although the  $(X'_{1D}X_{1D})$  matrix is now more complex than in the static treatment model, once again we can show that it has a reasonably simple closed form solution for the inverse, and, consequently, a simple matrix of partial correlations between included and excluded variables. Given the model's structure,  $(X'_{1D}X_{1D})$  is a 2 × 2 block matrix, and can be inverted (see Online Appendix and Lu and Shiou (2002)), and post-multiplied by  $(X'_{1D}X_{2D})$  to give the partial correlation matrix as:

$$\delta = \begin{bmatrix} \frac{N_{x_{2t}}}{N_t - N_{x_{1t}}} & 0\\ -\frac{N_{x_{2t}}}{N_t - N_{x_{1t}}} & 0\\ 0 & -\frac{N_{x_{2t}}}{N_t - N_{x_{1t}}}\\ 0 & \frac{N_{x_{2t}}}{N_t - N_{x_{1t}}} \end{bmatrix}.$$
 (7)

As before, *N* refers to the number of observations,  $N_{x_{1t}}$  to those for which  $(X_1 \cdot \text{Post})_{it} = 1$  (i.e. those for whom  $X_{1i} = 1$  in period t = 1), and  $N_{x_{2t}}$  to the quantity for which  $(X_2 \cdot \text{Post})_{it} = 1$ . Additionally  $N_t$  is equal to the number of observations for which  $\text{Post}_t = 1$ . Putting this together following Eq. (6) gives the OVB formula for the time-varying element of a difference-in-differences model as:

$$E[\widehat{\beta}_{2}^{ovb}|X] = \beta_{2} - \gamma_{2} \left(\frac{N_{x_{2t}}}{N_{t} - N_{x_{1t}}}\right).$$
(8)

Here we observe that the OVB follows virtually the same logic as in Eq. (3), however now conditional on treatment occurring in the

<sup>&</sup>lt;sup>4</sup> A subscript *D* is added to these matrices to indicate that they are based on difference-in-difference models, and so are different to the  $X_1$  and  $X_2$  matrices described in Eq. (1) given that they also include baseline fixed effects and, in the case of  $X_{1D}$ , a time dummy. We use  $k_1$  and  $k_2$  consistently to refer to the number of "treatment effects" of interest.

second period. The omission of a relevant treatment indicator in difference-in-differences models biases included treatment effects by any effect that this treatment indicator has on the outcome of interest, multiplied by the proportion of the (naive) "control group" that were actually treated.

Finally, note that this OVB formula can be resolved in this way even in the extreme case of multiple included and multiple omitted treatment indicators. An example of a model such as this is the application of Miguel and Kremer (2004), where two treatment groups each potentially generate their own externalities. The structure of the time-specific treatment indicators in Eq. (5) implies that once again  $(X'_{1D}X_{1D})$  is a 2 × 2 block matrix, and each block is an arrowhead matrix of dimension  $(1+k_1) \times (1+k_1)$ . Thus, each block of the  $(X'_{1D}X_{1D})$  matrix is invertible, as is the underlying matrix (full details are provided in the Online Appendix).

In the difference-in-differences model with multiple included and excluded treatment indicators, the matrix of partial correlations between excluded and included variables is:

• •

-

$$\delta = \begin{vmatrix} \frac{N_{x_{2t}}}{\theta_t} & \cdots & \frac{N_{x_{2t}}}{\theta_t} & 0 & \cdots & 0 \\ -\frac{N_{x_{2t}}}{\theta_t} & \cdots & -\frac{N_{x_{2t}}}{\theta_t} & 0 & \cdots & 0 \\ -\frac{N_{x_{2t}}}{\theta_t} & \cdots & -\frac{N_{x_{2t}}}{\theta_t} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ -\frac{N_{x_{2t}}}{\theta_t} & \cdots & -\frac{N_{x_{2t}}}{\theta_t} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & -\frac{N_{x_{2t}}}{\theta_t} & \cdots & -\frac{N_{x_{2t}}}{\theta_t} \\ 0 & \cdots & 0 & -\frac{N_{x_{2t}}}{\theta_t} & \cdots & -\frac{N_{x_{2t}}}{\theta_t} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & -\frac{N_{x_{2t}}}{\theta_t} & \cdots & -\frac{N_{x_{2t}}}{\theta_t} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & -\frac{N_{x_{2t}}}{\theta_t} & \cdots & -\frac{N_{x_{2t}}}{\theta_t} \\ 0 & \cdots & 0 & \frac{N_{x_{2t}}}{\theta_t} & \cdots & -\frac{N_{x_{2t}}}{\theta_t} \\ 0 & \cdots & 0 & \frac{N_{x_{2t}}}{\theta_t} & \cdots & \frac{N_{x_{2t}}}{\theta_t} \end{bmatrix}.$$
(9)

where  $\theta_t = N_t - N_{x_{1t}^1} - N_{x_{1t}^2} - \cdots - N_{x_{1t}^{k_1}}$ . Note that the matrix

in Eq. (7) is just a special case of the above, where  $k_1 = 1$ . Now, to determine the OVB *on each* included variable we return to Eq. (6). From this, and the preceding matrices, we have that the OVB formula on each treatment effect in time-varying  $(X_1 \cdot \text{Post})_{it}$ is:

$$E[\widehat{\beta}_{2}^{k,ovb}|X] = \beta_{2}^{k} - \gamma_{2}^{1} \frac{N_{x_{2t}}}{\theta_{t}} - \gamma_{2}^{2} \frac{N_{x_{2t}}}{\theta_{t}} - \gamma_{2}^{k_{2}} \frac{N_{x_{2t}}}{\theta_{t}} \quad \forall k \in 1, \dots, k_{1}.$$
(10)

This bias term is once again intuitive in the treatment effects framework. Here each omitted binary treatment indicator is incorrectly included in the control group, and hence biases the estimated treatment effects of included variables. This bias consists of the true treatment effect of non-included treatment variables ( $\gamma_2^k$ ) scaled by the degree to which this treatment group contaminates the naive control group  $[N_{x_{2t}^k}/(N_t - N_{x_{1t}^1} - N_{x_{1t}^2} - \cdots - N_{x_{1t}^k})]$ . As discussed previously, if a researcher has prior information related to omitted treatment units, this may allow an even finer consideration of this bias: producing an attenuation if the  $\gamma^k$  coefficients are

of the same sign as included treatment effects  $\beta$ , while overstating the magnitude if excluded and included treatment effects are of opposite sign.

### 4. Discussion and conclusion

The Omitted Variable Bias is frequently encountered in economics. While it is the base of a range of useful derivations, when multiple omitted variables are considered in regressions it is often presented as an *ex-post* test of model stability (e.g. Gelbach (2016)), rather than as providing a simple *ex-ante* formula for determining parameter bounds.

This paper provides a formula for the OVB which can be used *ex-ante* to infer biases in treatment models. It documents a simple and intuitive link, where the bias owes to the contamination of the control group with treated units. I show that this holds in simple static treatment models, as well as in more complicated differencein-differences models. This OVB formula provides an uncomplicated way to present treatment bounds in models with imperfectly observed treatment variables, as are often encountered in natural experiments, or experiments with imperfect compliance. One considerable benefit of such a derivation is that it opens a number of routes to extend this to more complicated models in other settings. For example, the structure lends itself very well to a case where rather than binary treatment measures, continuous treatment measures are applied.

The derivation can serve as both a useful starting point, and as a benchmark of potential biases in applied settings, encompassing a wide range of real-use cases. This includes, among other phenomena, (a) the geographic diffusion of treatment through environmental or social channels, (b) social interaction models, and (c) general equilibrium estimates and other economic externalities. These have been encountered in the literature in applications such as pollutants and climatic conditions (Almond et al., 2009), information diffusion over space through formal or informal institutions (e.g. Armand et al. (2017)'s analysis of "the reach of the radio"), vaccine provision (Manski, 2013), and the spillover of local economic activity to other markets (Allcott and Keniston, 2018).

### Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.econlet.2018.10.035.

### References

- Allcott, H., Keniston, D., 2018. Dutch disease or agglomeration? The local economic effects of natural resource booms in modern America. Rev. Econom. Stud. 85 (2), 695–731.
- Almond, D., Edlund, L., Palme, M., 2009. Chernobyl's subclinical legacy: Prenatal exposure to radioactive fallout and school outcomes in Sweden. Q. J. Econ. 124 (4), 1729–1772.
- Armand, A., Atwell, P., Gomes, J., 2017. The Reach of Radio: Defection Messaging and Armed Group Behavior. HiCN Working Papers 249, Households in Conflict Network.
- Banerjee, A.V., Cole, S., Duflo, E., Linden, L., 2007. Remedying education: Evidence from two randomized experiments in India. Q. J. Econ. 122 (3), 1235–1264.
- Baron, G., Perrodeau, E., Boutron, I., Ravaud, P., 2013. Reporting of analyses from randomized controlled trials with multiple arms: a systematic review. BMC Med. 11 (84), 1–7.
- Clarke, K.A., 2005. The phantom menace: Omitted variable bias in econometric research. Conflict Manage. Peace Sci. 22 (4), 341–352.
- Duflo, E., Glennerster, R., Kremer, M., 2007. Chapter 61 using randomization in development economics research: A toolkit. In: Schultz, T.P., Strauss, J.A. (Eds.), Handbook of Development Economics, Vol. 4. Elsevier, pp. 3895–3962.
- Gelbach, J.B., 2016. When do covariates matter? And which ones, and how much? J. Labor Econ. 34 (2), 509–543.
- Greene, W.H., 2002. Econometric Analysis, fifth ed. Prentice Hill, New Jersey.
- Imbens, G.W., Wooldridge, J.M., 2009. Recent developments in the econometrics of program evaluation. J. Econ. Lit. 47 (1), 5–86.

Kremer, M., 2003. Randomized evaluations of educational programs in developing countries: Some lessons. Amer. Econ. Rev. 93 (2), 102–106.

- Lu, T.-T., Shiou, S.-H., 2002. Inverses of 2  $\times$  2 block matrices. Comput. Math. Appl. 43 (1–2), 119–129.
- Manski, C.F., 2013. Identification of treatment response with social interactions. Econom. J. 16 (1), S1–S23.

Miguel, E., Kremer, M., 2004. Worms: Identifying impacts on education and health in the presence of treatment externalities. Econometrica 72 (1), 159–217, 01.

- Najafi, H.S., Edalatpanah, S.A., Gravvanis, G.A., 2014. An efficient method for computing the inverse of arrowhead matrices. Appl. Math. Lett. 33 (1), 1–5.
- Theil, H., 1957. Specification errors and the estimation of economic relationships. Rev. Inst. Int. Statist. Rev. Int. Statist. Inst. 25 (1/3), 41–51.